
1 of 31 06/14/05 04:25

Exercises: Post FreeBSD Install: PacNOG I Workshop

June 20, 2005

Please do not change the root password on your machine for any reason!

Your instructor may indicate some updates or changes to these exercises. The initial exercises are to finalize our
machine configurations for use later today, Tuesday and Wednesday, as well as to highlight some areas that are
different from Linux - particularly methods by which you can install software.

During these exercises we reference the machine named "noc". This is the classroom server box. It’s fully
qualified name for this workshop is noc.pacnog.school.fj, but just "noc" should work as well.

Exercises

Final Configuration

Use pw to create a new userid that you will use instead of root1.
Use /stand/sysinstall and pkg_add to install lynx, bash, sudo and joe2.
Installing two more packages (gmake, unzip)3.
Installation of software using ports4.
Setup sudo for privileged commands5.
Installing/configuring X11 (Xorg), Gnome and gdm6.

Some Differences from Linux

Process startup and the RC system7.
Disk partitions: how to view your disk8.
Getting help using manpages, docs, and the FreeBSD Handbook9.
Shutdown and reboot your system10.

For Those who Want More Practice

Initial login, virtual terminals, command line manipulation11.
General job control (ctrl-c, ctrl-z, bg)12.
Processes and stopping them13.
Use top to see the state of your system14.
Create a file and use vi to edit the file15.
Using vipw to edit a user entry16.
Practice with basic filesystem commands17.
Command pipes and grep18.
Searching for more information about your system19.
File and directory permissions20.
Commands - programs - shell - path21.

To be Done Last by Everyone

Update your /usr/ports collection using cvsup22.

Note: The "#" and "$" characters before commands represents your system prompt and is not part of the
command itself. "#" indicates a command issued as root while "$" indicates a command issued as a normal user.

Note 2: If you install software, update your environment as root and the change is not immediately available try
typing rehash at the root shell prompt. This is only necessary when running a C shell (e.g., like /bin/csh).

1.) Use pw to create a new userid that you will use instead of root [Top]

2 of 31 06/14/05 04:25

First login to your computer if you have not already done so. Login as userid "root" using the password given at
the start of class and that you used while installing FreeBSD.

Now that you are root you can create a new user account on your machine. If more than one person is using
your machine, then be sure that you create an account for each and every person.

To create or remove a user account you should use the "pw" command. To get a feel for the power and
complexity of this command take a look at its man pages:

man pw

So, first pick a username that you want to use. For example, use your first name, last name, a combination of
both, or whatever you prefer. For purposes of this example we use username. So, to add a new user to your
system type:

pw useradd username -m -s /usr/local/bin/bash

This creates the user username. The "-m" says add a new home directory of /usr/home/username and copies
files from /usr/share/skel to the new user’s home directory. The default shell "bash" will be used. Note that at
this point the bash shell has not been installed on your machine. We’ll be doing this in the upcoming exercises.

Next you need to set the password for the new userid, otherwise you won’t be able to use the account properly.
To do this use the passwd command like this:

passwd username

You will be prompted to enter in a new password, then to enter it again to verify. You need to pick a secure
password. Note, as root you are allowed to pick any password you want, but you need to pick a secure password
for your new account. Here are some quick guidelines to picking a secure password:

Password should be at least 6 characters in length.
Don’t use any words in a dictionary in any language - forwards or backwards.
The password should contain a mix of letters, numbers, and upper and lower-case letters.

For example, something like "b00TaN2k5" is OK. Something like "pN0G2k5!" ("PacNOG 2005!") isn’t bad
either. Please don’t pick either of these for this exercise.

So, finally, let’s change your new user’s password using the command:

passwd username

2.) Use /stand/sysinstall and pkg_add to install lynx, bash, and joe [Top]

For this exercise you need to be logged in as root.

FreeBSD has a large collection of preconfigured binary packages for each release that can be installed in a
number of ways, including:

Using the post-installation configuration utility /stand/sysinstall (don’t use this now).1.
Directly from the FreeBSD installation CD-ROMs using pkg_add.2.
From a local network collection of FreeBSD packages specifying the network path and protocol using
pkg_add.

3.

Blindly across the network using the "-r" option of the pkg_add command4.

The core package utilities available in FreeBSD are:

pkg_add
pkg_delete
pkg_info

You can read about each of these package commands using the "man" command, i.e.:

3 of 31 06/14/05 04:25

man pkg_delete

man pkg_add

Remember, the pkg utilities under FreeBSD are very powerful as they can resolve dependencies, let you test
installation before actually installing software, and keep track of what is installed with utilities to query the
package database and assocated files.

For our first package we are going to install a text-based web browser called lynx. We’ll use the /stand/sysinstall
program to install lynx from the first disc of the FreeBSD CD-ROM installation set.

First,you can see if lynx is already installed on your system. Use the pkg_info command to do this. To get an
idea of what packages are installed and what the default pkg_info output looks like type:

pkg_info | more

You’ll notice a pause while your machine prepares to show all the packages installed, in alphabetical order.
Press space to scroll down the list, or ctrl-c to stop the list.

Now to check for just the lynx package type:

pkg_info | grep lynx
or
pkg_info lynx*

If you don’t understand what "grep" is doing type "man grep". In exercise 18 we go in to detail about the use of
"grep", and the pipe facility represented above by the "|" character.

If lynx is already installed, for purposes of this exercise, first remove the package from our system (it’s good
practice!). You can do this by typing:

pkg_delete lynx-2.8.5

Now type again:

pkg_info | grep lynx

And, assuming that lynx is now not installed you should just get your prompt back.

Now to install lynx using the FreeBSD install CD-ROM do the following:

Insert the FreeBSD Disc 1 Installation CD in your machine’s CD-ROM drive.
Be sure that you are logged in as the root user:

Now start the "sysinstall" utility by typing:

/stand/sysinstall

At this point you take the following steps in the sysinstall menu system to choose the lynx package
and install it:

Choose "Configure" (you can press "C" and ENTER)
Arrow down to "Packages" and press ENTER
For installation media choose "CD/DVD" and press ENTER (note you can use network
options here)
If prompted choose "acd0" for your CD-ROM drive
Scroll down the list of presented categories (using the down arrow key) until you see "www",
and press ENTER
Scroll down to "lynx-2.8.5" to highlight this then press the spacebar to choose the package,
then press ENTER
Now choose "Install" and press ENTER to install Lynx version 2.8.5 on your system

At this point you will be prompted for disc 2 of the FreeBSD installation set. Most of the

4 of 31 06/14/05 04:25

FreeBSD packages have been moved to this disc. Go ahead and follow the on-screen
instructions to swap cd-roms.

Once installation is complete you will be presented with the initial FreeBSD Configuration
Menu - Scroll to the top of the screen and choose "X" for "Exit" and press ENTER
Finally choose "Exit Install" to leave the "sysinstall" utility

After exiting this utility your FreeBSD install CD-ROM may still be mounted. You can type "df"
and look for an entry like this:

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/acd0 660384 660384 0 100% /cdrom

If you don’t see the "/cdrom" entry, then type:

mount /cdrom

again to make sure your CD-ROM (FreeBSD disc 2) is correctly mounted.

Installation of bash

Now let’s install the bash package using a single command. As your FreeBSD CD-ROM is
mounted under /cdrom, and as your instructor knows where the bash package resides on your CD,
you could install bash by typing:

pkg_add /cdrom/packages/shells/bash-3.0.16_1.tbz

But, rather than doing this, let’s do this a bit differently. First use the cd (Change Directory)
command to change to the initial cd-rom directory. Then we’ll change to the directory
/cdrom/packages/All. The "All" directory contains a list of all packages available to be installed on
the cd-rom. It has the advantage that if you use pkg_add installing from this directory that if there
are dependent packages that are needed, then they will be found and installed as well. So, first do:

cd /cdrom

cd packages/All

Now let’s look for the bash package. We can use the ls command to do this with a wildcard. You’ll
be practicing and learning much more about these basic system commands in a few more exercises.
OK, so do:

ls bash*

You should see bash-3.0.16_1.tbz on your screen. This is how you know the exact name of the
package you want to install. In addition, once you have installed and are using the bash package it
will be easy to use command completion to figure out complicated filenames like these. You’ll see
more of this in exercise 7. So, now that you know you want to install the package called
bash-3.0.16_1.tbz (we’re going to use the newer version vs. the 2.05b version that’s listed), and you
are already in the directory where this file resides, then you can simply type:

pkg_add bash-3.0.16_1.tbz

and the bash package will be installed. By the way, bash is an alternate shell environment that you
can use which has more features than the default shell sh. Notice the file extension of "tbz" on the
file bash-3.0.16_1.tbz, this means that the file is actually a group of files that have been compressed
and saved as a single file.

Installation of joe

Some of you may practe the use of the "vi" editor, which is not as friendly as the optional "joe"
editor. There are reasons for this, which we’ll explain. But, for later exercises let’s install "joe" right
now, but this time we’ll install from our local workshop server. If the server name is different than
what is shown below your workshop instructor will let you know.

5 of 31 06/14/05 04:25

To install the "joe" editor from the local workshop server you can simply type the following:

pkg_add ftp://noc/pub/FreeBSD/packages/All/joe-2.8_5.tbz

This will download and install the joe 2.8_5 package to your machine from the local workshop
server. Note that this editor has been added by us. It no longer ships with the default FreeBSD
installation.

Do a little bit of exploring about what you have just installed by entering the following commands:

man lynx (we’ll discuss man a bit later)

man bash

man joe

pkg_info lynx-2.8.5

lynx www.freebsd.org

’q’ (to ’q’uit lynx)

joe

ctrl-c (to abort, you can say "no" to saving data)

3.) Installing two more packages (gmake, unzip) [Top]

For this exercise you need to be logged in as root.

During the week we will need two additional packages to do our work. The two packages we need
are:

gmake: The GNU Make utility.
unzip: List, test and extract compressed files in a ZIP archive.

Both of these items are packages available on the first FreeBSD CD-ROM. We have placed these
files on our classroom server in the /pub/FreeBSD/packages directory. So, to install these three
packages simply issue the following three commands

pkg_add ftp://noc/pub/FreeBSD/packages/All/gmake-3.80_2.tbz

pkg_add uftp://noc/pub/FreeBSD/packages/All/unzip-5.52_1.tbz

If you want to learn more about these three packages you can type:

man gmake

man unzip

4.) Installation of software using ports [Top]

For this exercise you need to logged in as root.

The ports collection, which we installed during the FreeBSD install, is larger than the packages
collection available on the first FreeBSD install cd-rom. As of June 2004 there were over 13,000
ports available! The FreeBSD Handbook has an excellent discussion of using Ports in section 4.5.
In a nutshell these are the key points to remember about ports:

The ports collection you installed contains descriptive files about how to make a software

6 of 31 06/14/05 04:25

package and where to get the actual source files. The actual source files (referred to as
"distfiles") are not installed.
You can tell your machine to find distfiles on a local server, or you can get them from
CD-ROM, otherwise when you install a port file the software source will be downloaded
from the Internet.
You can use the cvsup tool to keep your ports collection up-to-date. That is, all the
descriptive files of where to find source, version numbers, etc.
Once you have installed a software package using ports it is possible to "deinstall" the
package.
There is a tool called portupgrade which will find all installed ports and keep them
up-to-date.
If you have a ports distfiles cd-rom it needs to be mounted as /cdrom for the ports utilities to
find the distfiles.

The very first thing we are going to do is to update a master configuration file so that when you
attempt to install a port it will look on our local server for the distfiles rather than using our single
outgoing link to fetch distfiles from the internet.

To do this you should edit the file (use joe or vi) /etc/make.conf and add the following two lines to
the end of the file:

MASTER_SITE_BACKUP=ftp://noc.pacnog.school.fj/pub/FreeBSD/ports/distfiles/${DIST_SUBDIR}/
MASTER_SITE_FREEBSD=yes

Remember to replace "noc" with what we gave you at the start of these exercises. Now that this is
done we are going to install the following port:

lsof: LiSt Open Files. Shows information about files opened by processes.

First do the following:

cd /usr/ports
make search name=lsof

This will output something like:

Port: lsof-4.72.2
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat(1))
Maint: obrien@FreeBSD.org
B-deps:
R-deps:
WWW: http://people.freebsd.org/~abe/

From this you can see that the lsof utility resides in /usr/ports/sysutils/lsof. So, to install lsof on
your system you do the following:

cd /usr/ports/sysutils/lsof
make
make install

Make will download the lsof source (hopefully from our local server!), and then compile the source.
"Make install" will place the compiled binary files in the appropriate directories on your system and
update the appropriate configuration files if necessary. You can issue the single command "make
install" instead.

You can now type:

man lsof

For more information. Finally, if you want to deinstall a port once it is installed, for instance lsof,
you would do the following (please don’t do this):

cd /usr/ports/sysutils/lsof
make deinstall

7 of 31 06/14/05 04:25

And, if you decided that was a mistake, you can now do the following to reinstall a port (after it’s
been installed once):

cd /usr/ports/sysutils/lsof
make reinstall

If you do a "make clean" then "make reinstall" will no longer work for that port. If you want to see
lsof in action you can type:

lsof -i

In addition, FreeBSD installs the utilities fstat, and sockstat that can display the same
information.

5.) Using sudo for privileged commands [Top]

When you created your own user account username you did not place it in the wheel group. This
means that you cannot become the root user from your username using the command su. This is a
useful thing to be able to do if you don’t want to have to logout and log back in each time you need
to be root. In addition, the change we are going to make to the "sudoers" file, which controls access
to the sudo command is based on your username being in the wheel group. So, the first thing you
need to do is be sure you are logged in as root:

$ exit

Login: root

Now we are going to use the pw command to make a change to your username account make it a
member of the wheel group. The wheel group is a special group in Unix that allows members to
become root. To do this type:

pw usermod username -G wheel

The "-G" indicates "group list". If your user already belongs to other groups you must include all
these groups in list format (e.g. "group1,group2,group3,etc.), otherwise your user will be removed
from the other groups when you issue this command. To see what groups a user belongs to you can
type:

groups username

Once your user is a member of the wheel group you can use the su (Substitute User identity)
command to become another user without having to login and logout of your session.

To practice this you need to login as your username account now:

exit

$ Login: username

Now you can practice using su.

$ su - root

If you skip the "-" option, then you won’t execute the root login scripts. In general you can type "su
user", or "su - user", and switch to any user’s environment.

Now let’s drop back to your standard user account and try to do something that requires privileges:

exit

$ less /etc/master.passwd

8 of 31 06/14/05 04:25

You should get the message, "/etc/master.passwd: Permission denied" - Now try running the
same command like this:

$ sudo less /etc/master.passwd

You noticed that this did not work, right? First we need to add a package called "sudo" to your
machine, then we need to configure the file /etc/sudoers to allow you to use this facility. Let’s get
the package installed first. We’ll use pkg_add and we’ll get it from our local server:

$ su - (you must be root to install this package)

pkg_add ftp://noc/pub/FreeBSD/packages/All/sudo-1.6.8.7.tbz

Now we need to configure the file /etc/sudoers so that you can use the sudo command:

visudo

This is a special utility to edit the /etc/sudoers file using vi, but to lock the file so that no one else
can edit it while you are using visudo. So, remember your vi commands and scroll down the screen
until you find the following lines in the file (if you need help with vi ask your instructor or one of
the classroom helpers):

root and users in group wheel can run anything on any machine as any user
#root ALL = (ALL) ALL
#%wheel ALL = (ALL) ALL

(Note/hint: there are other ways of finding this line in vi. You could search for something using
"/".).

Now, once you are here, just make one, small change. Remove the "#" symbol (it’s a comment
symbol) from in front of "%wheel". Once you do this save and quit from the file. So, your file
should now look like:

root and users in group wheel can run anything on any machine as any user
#root ALL = (ALL) ALL
%wheel ALL = (ALL) ALL

And, to save and quite it’s:

:wq

That’s it. You are now ready to run "sudo" as a general user (or, at least a general user in the wheel
group). Make sure you exit from the root shell you are in:

exit

And, now as a general user, try issuing the command:

$ sudo less /etc/master.passwd

You will be prompted for a password, and the first time you use sudo you’ll receive a warning. The
password you should enter will be your user account’s password. This is different from Linux. Type
this in, and you should be able to view the /etc/master.passwd file even though you are running as a
standard user. Try doing this again ("less /etc/master.passwd") and you’ll notice that you are no
longer prompted for the root password. You can issue any privileged command (pretty much)
without needing a password at this point. Once you login and logout again, then you’ll have to enter
a password the next time you use sudo.

sudo is very useful to allow you to do system administration tasks on your machine without needing
to be logged in as root. This can help to protect you from making mistakes running as root, which
can be costly.

9 of 31 06/14/05 04:25

6.) Installing/configuring X11 (Xorg), Gnome and gdm [Top]

For this exercise you will need to be logged in as root.

Before we begin there are a few items to understand to put this in perspective:

A much more complete discussion of using X and Desktops under FreeBSD can be found in
Chapter 5, The X Windows System, of the FreeBSD Handbook. I highly recommend reading
this entire chapter if you wish to fully configure your X Window environment for FreeBSD.
FreeBSD is a server-based operating system. Configuration of X, display managers, and
desktops like Gnome and KDE are not done during installation as this is not the objective of
the OS.
You can configure FreeBSD to autostart in to a GUI environment, but I would not
recommend this, except, possibly, for desktop and laptop use.
To automate the use of X Window you can edit /etc/ttys (see the Handbook), xinitrc, .xinitrc,
.xsession, Xsession, and KDE config files to your liking. For our purposes we are going to
install Gnome and manually call the Gnome Dislpay Manager (gdm) when we wish to use an
X Window environment.
X11 is the implementation of the X Windows environment. Xorg is the X11 implementation
that FreeBSD uses by default. You can still use XFree86 if you wish, but configuring Xorg is
easier. Gnome and KDE are Desktop environments that include Window managers and entire
sets of desktop applications.
You can clean up and make your font environment considerably nicer under X, particularly
fonts used by OpenOffice, Netscape/Mozilla/Firefox, and The Gimp. This is easier to do
using Xorg. Read Chapter 5 of the FreeBSD Handbook for more details.
The Gnome and KDE installations that come with the FreeBSD 5.4 CD-ROM installer are
quite up-to-date (as of June 2005). The Gnome version is 2.10 and KDE is version 3.4.
Gnome version 2.10.1 is available via the ports tree, and you can read about Gnome on
FreeBSD here:

http://www.freebsd.org/gnome/

You can read about KDE on FreeBSD here:

http://freebsd.kde.org/

If you plan on installing both Gnome and KDE and/or possibly offering up Desktop
environment via your network from a server, then you will most likely use the KDE Display
Manager (kdm) or, possibly the X Display Manager (xdm). kdm can offer access to both
Gnome and KDE Desktop environments at loging.

For this workshop we are going to install Gnome from your FreeBSD CD-ROM install set and we
are going to use gdm manually to start our X Window environment. We have already configured an
Xorg configuration file for your particular machines setting the correct monitor refresh rates and
setting your desktops to use 24-bit color at a depth of 1024x768. You will be copying this file from
our classroom server, noc, to the appropriate location.

During our initial installation of FreeBSD we installed Xorg, but we have not yet configured it to
run on our hardware. First, let’s install Gnome using the sysinstall utility.

Start the sysinstall utility (as root) by typing:

/stand/sysinstall

At this point you take the following steps in the sysinstall menu system to choose the Gnome
packages and install them:

Choose "Configure" (you can press "C" and ENTER)
Arrow down to "Packages" and press ENTER
For installation media choose "CD/DVD" and press ENTER (note you can use network
options here)

10 of 31 06/14/05 04:25

If prompted choose "acd0" for your CD-ROM drive
Scroll down the list of presented categories (using the down arrow key) until you see
"gnome", and press ENTER
Scroll down the list to "gnome2-2.10.0" to highlight this then press the spacebar to choose the
package, then press ENTER

You should have noticed that multiple Gnome packages are automatically chosen as
dependencies (a "D" appears in the selection boxes vs. an "X") when you choose just
gnome2-2.10.0.

Now choose "Install" and press ENTER to install Gnome version 2.10.0 on your system

At this point you will be prompted for disc 2 of the FreeBSD installation set. Most of the
FreeBSD packages have been moved to this disc. Go ahead and follow the on-screen
instructions to swap cd-roms.

Once installation is complete you will be presented with the initial FreeBSD Configuration
Menu - Scroll to the top of the screen and choose "X" for "Exit" and press ENTER
Finally choose "Exit Install" to leave the "sysinstall" utility

At this point both Xorg (the X11 X Window system) and Gnome are installed on your system.

Configuration follows.

Some Differences from Linux

7.) Process startup and the RC system [Top]

This is a rather complex topic. But, in a nutshell, under FreeBSD 5.4, when your machine boots
processes (that is daemons or services) are configured and/or started like this:

Items that are configured or referenced to start in the file /etc/defaults/rc.conf contain
corresponding script entries in /etc/rc.d/.
You can override settings in /etc/defaults/rc.conf by placing settings in /etc/rc.conf.
Every script in /etc/rc.d/ will attempt to run, but if it does not see:
script_enable="YES"
in /etc/defaults/rc.conf or /etc/rc.conf then the script will not run to start the corresponding
service.
Some third party software will place entries in /etc/rc.conf and corresponding third party
startup script packages in /usr/local/etc/rc.d/.
Some third party packages will place startup/config scripts in /usr/local/etc/rc.d/ that do not
look in any file, but simply execute upon system boot.
Some older software may still place startup items in /etc/rc.local, but this has been
deprecated, even though it is still supported.

To get a better feel for this you should read:

$ man rc

Then, you should probably read this again...

Now, if you want to start a process each time your machine boot you generally add an item to
/etc/rc.conf to indicate this. For instance, if you wanted to enable the ssh daemon (server) each time
your machine started then you would add the line:

sshd_enable="YES"

to /etc/rc.conf. If you look at /etc/defaults/rc.conf you’ll see that sshd is not enabled in this file by
default. By enabling sshd in /etc/rc.conf this overrides the setting in /etc/defaults/rc.conf. In

11 of 31 06/14/05 04:25

addition, if you look in /etc/rc.d/ you’ll find an sshd script file that starts this service.

To see how sshd is enabled initially do this:

$ grep sshd /etc/defaults/rc.conf

You should see something like:

sshd_enable="NO" # Enable sshd
sshd_program="/usr/sbin/sshd" # path to sshd, if you want a different one.
sshd_flags="" # Additional flags for sshd.

These are the lines in /etc/defaults/rc.conf that deal with the ssh daemon. When you specified to
enable the ssh daemon during installation then in the file /etc/rc.conf the lines that read:

sshd_program="/usr/sbin/sshd" # path to sshd, if you want a different one.
sshd_flags="" # Additional flags for sshd.

became active. So, if your ssh program was not "/usr/sbin/sshd" for some reason, then in
/etc/rc.conf you could add:

sshd_program="/new/directory/sshd" # new path to sshd

to override what’s in /etc/defaults/rc.conf.

You could just put everything in /etc/defaults/rc.conf, but you don’t want to do this. If you upgrade
your system it’s almost certain that /etc/defaults/rc.conf could be overwritten. In addition, this file is
large and it would be hard to see the changes you had made if you were to do them in
/etc/defaults/rc.conf.

To start a service manually you can use it’s startup script by hand. For instance, try typing:

$ su - (you must be root to run these commands)

/etc/rc.d/sshd

What is returned on the screen? It should be something like:

Usage: /etc/rc.d/sshd [fast|force|one](start stop restart rcvar keygen reload status poll)

So, you could type

/etc/rc.d/sshd status

to see if ssh is running. If it is, then try:

/etc/rc.d/sshd stop

to start the service. Now type:

/etc/rc.d/sshd start

to restart the service. Note the startup script option "reload" - This would let you make changes to
the ssh configuration file(s) and then reload the service without actually stopping it so that it reads
the new configuration. Note that already connected clients would not see this new configuration
change until the logoff and log back in again.

Finally, and this is not obvious, if a startup script in /etc/rc.d has not been enabled in
/etc/defaults/rc.conf or /etc/rc.conf, then even if you manually invoke the script it will not run. You
will not get any indication of this other than the service not starting (i.e. use "ps auxw| grep
servicename" and you won’t see it started).

At this point take a closer look at /etc/rc.d/

12 of 31 06/14/05 04:25

ls /etc/rc.d

and use "man" to read about some of the services. If you want to try and start and stop some of
these services feel free to do so now, but remember you’ll need to add
’servicename_enable="YES"’ in /etc/rc.conf for the service to start.

8.) Disk partitions: how to view your disk [Top]

First, make sure you are logged in as your user and not as root.

Now in a terminal lets look at the partitions. Type:

$ df
$ df -h

What difference did you see between "df" and "df -h". How can you see what your swap contains
(note it was not listed using "df")? Use this:

$ swapinfo

If you want to see more detailed information about your disk slices you can use the "fdisk"
command. As a general user you are not allowed to run this program, so you must use sudo. Try
this by typing:

$ sudo fdisk

Be careful with fdisk as you can remove slices, partitions, etc.

If you are interested in how much space files are taking up in a directory or a group of directories
you can use the "du" command. Try it out by typing:

$ du

$ du -h

As usual you can get more information by typing "man du".

Now that you’ve seen these methods for viewing disk information, you should be able to
understand the output of the disklabel command a little better. The disklabel command is really the
proper way to view the status of partitions in your FreeBSD slice at it will show you all your
FreeBSD slice information no matter if a partition is mounted or not. In some cases this is critical if
you are trying to troubleshoot problems and not all partitions have mounted. So, if FreeBSD resides
on the slice /dev/ad0s1 on your disk, then to see disk information you can type (as a normal user): $
sudo disklabel /dev/ad0s1

This shows you output along these lines (will be different for this workshop):

/dev/ad0s2:
8 partitions:
size offset fstype [fsize bsize bps/cpg]
 a: 409600 0 4.2BSD 2048 16384 25608
 b: 1433600 409600 swap
 c: 8385930 0 unused 0 0 # "raw" part, don’t edit

 d: 1843200 1843200 4.2BSD 2048 16384 28552
 e: 3072000 3686400 4.2BSD 2048 16384 28552
 f: 1627530 6758400 4.2BSD 2048 16384 28552

As you can see it includes the "c" partition and "b" or the "swap" partition as well as filetypes.

9.) Getting help using manpages, docs, and the FreeBSD Handbook [Top]

13 of 31 06/14/05 04:25

Now that you have FreeBSD up and running you probably want to have a way to figure out how to use it when
there are no instructors around, or other FreeBSD-knowledgeable people. First and foremost, make it a habit to
read the man pages (MANual pages) for the commands that you use. You might be surprised at some of the
things these commands can do! In any case, as you have seen, when in doubt about what a command does, or
how it works simply type:

$ man command

Optionally, you might find some additional information for some commands typing:

$ info command

And, to get information about both these commands type:

$ man man

$ info info

After this there is a large amount of documenation available to you in serveral ways. For instance, if you look
in:

/usr/share/doc

you will find multiple FreeBSD articles in various languages available to you. In addition, the FreeBSD
Handbook is available here under /usr/share/doc/handblook. If you wanted to start reading the FreeBSD
Handbook from your local har drive you could either point a web browser to the file
/usr/share/doc/handbook/index.html, or you could type the command:

$ lynx /usr/share/doc/handbook/index.html

Go ahead and type this command now to get a feel for what information is available to you in the FreeBSD
Handbook. Now let’s look at the FreeBSD FAQ by typing:

$ lynx /usr/share/doc/faq/index.html

After this, have a look at some of the available articles by doing:

$ cd /usr/share/doc/en/articles

$ ls

Finally, there are several papers available as well. Try:

$ ls /usr/share/doc/papers

If you have a network connection, then you can go to http://www.freebsd.org/docs.html for even more
information. Become accustomed to the idea of using man to get specific information about commands, and
then using these additional resources to get an overview of entire sub-systems of the FreeBSD operating system.
If you want to read the FreeBSD Handbook online it is available here
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html. If you want to understand
FreeBSD concepts in more depth, then the FreeBSD Handbook is really where you should begin.

10.) Shutdown and reboot your system [Top]

For this exercise you need to be root. It is better to close open files and programs (for example Firefox, vi, etc.),
but it is not necessary. Before continuing read the man pages for shutdown, init, halt, and reboot (you’ll see they
are all connected):

man shutdown
man init
man reboot
man halt

14 of 31 06/14/05 04:25

Now, in a terminal do the following (save data, etc. as this will immediately reboot your machine!):

shutdown -r now

Now your machine is rebooting. The "-r" stand for "reboot" and the "now" meant to take this action "now". This
takes a moment. To stop your machine entirely you can use the command:

halt

Or, you can also change your run level to run level 0, which is the same as "halt". So, you would write:

init 0

And, to reboot this is the same as init 6, or:

init 6

If you are running something like gdm for a graphical login prompt on your machine you can usually use
provided menu choices to reboot or shutdown. The thinking is that once you have this level of access, then you
can simply turn off the machine’s power if you wish. At the very least it is much more friendly to use a software
interface to shutdown or reboot than pulling the power as processes have a chance to clean up, save data, etc.

Note, sometimes it is useful to bring your machine down to runlevel 1, or "single user mode". For instance, if
you are running X Windows and want to shut it down quickly (you’d really only do this on a desktop machine,
by the way!), then you can open a terminal window as root (or use "su"), and then type"

init 1

This will shut down X Windows, networking, and quite a bit more. Now you are in "single user mode". To get
back to "multi-user mode" you simply type:

exit

This exits your single-user modem shell and tells the system to go back to multi-user mode. Notice that the
"runlevel" concept under FreeBSD is different than under Linux. The major difference are:

Linux uses runlevels 1, 3, and 5 (single user, network with no GUI, network with GUI [X]).
FreeBSD uses runlevel 1, single user mode. To get back to network mode with or without GUI you exit
runlevel 1 (or you can reboot).
You can use init c if you with to block further logins under FreeBSD.
Both FreeBSD and Linux use runlevels 0 and 6 in the same manner (halt and reboot).

For Those who Want More Practice

11.) Initial login, virtual terminals, command line manipulation [Top]

The first time you login on your system after installation you will be presented with a prompt that looks
something like this:

FreeBSD/i386 (name.domain) (ttyv0)

login:

At this point you can enter in "root" and, when prompted, the password we gave you in class for the root
account. Once you are logged in you can work with an additional 7 virtual terminals if you wish. Actually, you
can login from any virtual terminal you want at any time. To do this simply press:

ALT-FN

With "FN" being anything from the F1 to the F8 key. By default you are in ttyv0 which corresponds to the

15 of 31 06/14/05 04:25

ALT-F1 keyboard sequence. Go ahead and login and then press:

ALT-F2

and login again. Feel free to do this on F3, F4, F8, etc. as you wish. You can cycle through each terminal
session easily. This is an extremely useful technique when you wish to do more than one thing at the same time,
but you are not using a graphical interface. Since we are loading the mouse daemon (mouse support) you can,
also, copy and paste text between your virtual terminals. To do this go back to your initial login terminal by
pressing:

ALT-F1

Try typing in the command:

$ clear

and pressing ENTER. Note that your screen clears and goes to the top. Now, you can easily recover your last
command by pressing the UP-ARROW key on your keyboard once. Get used to doing this as it can be very
useful if you have entered in a long command and made a mistake. You can press UP-ARROW to get the
command back, then you can use the LEFT-ARROW to move your cursor to where the mistake is and correct it,
then simply press ENTER to reissue the command. Note, you do not need to go back to the end of the command
line before pressing ENTER.

In any case, you’ve pressed UP-ARROW once and should have the command "clear" visible. Now take your
mouse and highlight just the command using the left mouse button. Without doing anything else with your
mouse now press:

ALT-F2

to get to one of your other terminal sessions. Now just press the middle mouse button once. What happened?
The text "clear" should have pasted on to your command line. Now you can press ENTER to execute the
command. You can use this same trick to copy and paste in to editor windows, long and complex commands,
between applications in a graphical environment, etc.

One final useful tip when working in your terminal sessions. As you type each command it is being saved in to a
file called your "history file". This has a very useful purpose. Go back to your original login terminal pressing:

ALT-F1

and type the command:

$ history

You should see a list of commands you have entered in earlier. This list is probably short and it will even
include incorrect commands you may have typed in. To quickly and immediately recover and execute a prior
command make note of the number in the left-hand column next to the command and then just type:

$!N

Where N is the number. So, if "clear" had been the second command, and you typed in:

$!2

Then clear would appear on the command line very quickly and immediately execute. During the week you are
going to be typing in some long and complex commands. The use of history can save you considerable time. If
you press the UP-ARROW key repeatedly you can scroll through the previous commands you have entered
beginning with the last command. Give it a try.

One very useful trick when using XWindows. If you need to escape your graphical environment and go to a
console for some reason you can use the same virtual terminals, except that you press the keyboard
combination:

16 of 31 06/14/05 04:25

ALT-CTRL-F1 through F8

At this point you will exit your graphical environemnt (KDE, Gnome, etc.) and be presented with a text console
login prompt. Your graphical environment is still running as you left it. To get back to your graphical
environment press:

ALT-CTRL-F9

Why might you need to do this? Here’s one scenario:

You’ve just installed your favorite MTA (email server/Mail Transport Agent) and you typed something like
(don’t do this now):

pw usermod username -G mail

to place your user in the "mail" group. What just happened if your user was also a member of the "wheel" group
and this is how you are using su and sudo? You can no longer become root in your session. To fix this you could
go to a virtual console window, log in as root, and reissue the command above, but this time correctly:

pw usermod username -G wheel,mail

To fix this problem.

12.) General job control (ctrl-c, ctrl-z, bg) [Top]

For this exercise you need to be logged in as root.

When you wish to stop an active process in your shell you can use the keyboard combination "ctrl-c". If this
does not work, then you may want to try "ctrl-z". The ctrl-z sequence will suspend the process allowing you to
place it in the background using the bg (BackGround) command. Generally this command is most useful if you
are running in a graphical and have started a service that has locked you out of a shell window. Here are some
examples to try to demonstrate these concepts:

cd /
ls -R (starts to recursively show contents of all directories on your system)
press CTRL-C (aborts the output)

In addition, when you type "man command" you can press the "q" key to exit from viewing the man pages. The
same goes for "less" as well.

Now let’s start a process in your shell to requires you to use ctrl-c to end the process:

tail -f /var/log/messages

In this example you are viewing the end of the main log message for your system with data appended to the
output as the file grows. That is, if a message is generated and placed at the end of the log file you will see this
message interactively appear on the screen. This is a very useful tool when you are trying to debug problems on
your system. You can open one terminal window (as root, or with an account that can run privileged
commands), type "tail -f /var/log/messages", start a process in another terminal window and then view the end
results in the window where the tail command is running.

Now to end the "tail -f" process press ctrl-c to abort the output. In this case "q" or "ESC" will not work. You
need to know about ctrl-c to do this.

13.) Processes and stopping them [Top]

For this exercise please be sure you are logged in as root.

If you would like to see what is running on your system, then you use the "ps" command (ProceSs). For

17 of 31 06/14/05 04:25

example, to see everything running on your system for all users, and even items running that are detached type:

ps auxw

If you find something that you wish to stop (maybe your web browser session has hung), then you can look for
the process ID number, and you can issue a "kill" command to stop the process. This is a very powerful feature
of UNIX. If you need to kill a process for another user then you must have privileges to do this, usually root.
The example we are going to use is to kill an account login in another terminal. We’ll be going back and forth
from one terminal to another and we’ll use tail, /var/log/messages, and ps for this exercise. First, let’s start an
interactive tail command of our /var/log/messages file:

tail -f /var/log/messages

Now switch to a second terminal and log in again as root:

ALT-F2

Login: root

Switch back to your original login terminal where the interactive tail command is running by pressing ALT-F1.
What do you see. You should see something indicating that root logged in on terminal ttyv1. More specifically
the entry will look basically like this:

Jan 10 17:21:05 localhost login: ROOT LOGIN (root) ON ttyv1

OK, now break out of the tail -f process by pressing "CTRL-C". Now let’s find the process ID of this new login
session. To do this type:

ps auxw| grep login

If you had just typed "ps -aux" you would have seen all processes and then you may have figured out that the
"login" process of your other root login can be found by looking for the login keyword.

Now we are going to kill the login shell of your other root login on ttyv1. But, how do you know which process
to kill. You probably saw something like this when you did "ps auxw| grep login":

root 1060 0.0 0.3 1612 1308 v0 Is 17:22PM 0:00.03 login [pam] (login)
root 1061 0.0 0.3 1612 1308 v1 Is 17:22PM 0:00.03 login [pam] (login)

These look almost identical, but note the process IDs. One is 1060 and the other is 1061. This should be your
clue. Your first root login will have a lower process ID number than your next root login. In addition, if you had
waited and started other processes before logging in your second root login, then the process ID numbers might
be separated by more than 1. So, in this case you will want to stop the process ID 1061. Note: Naturally on your
system the actual process ID numbers will almost certainly be different. Now, to stop process UD 1061 do this:

kill 1061

Now go back to the other terminal and see if the process has been ended. That is press ALT-F2 and see if the
"Login:" prompt appears. If it does, then you just forced the user off the system. If the "Login:" prompt does not
appear, then you may need to use a more forceful kill command in the form:

kill -9 1061

But, be careful this shuts down the process without giving it any chance to save data, remove lock files, or
generally clean up. I.E. you could lose or corrupt data.

In general, if you do:

ps auxw | more

And you see items running that you do not want to have run each time you boot, then you can, generally, edit
/etc/rc.conf and override the setting that starts this service (see /etc/defaults/rc.conf). You can stop the service
immediately by using the "kill" command. If you are testing a configuration file for a known running service
(say the Apache web server) you can, often, tell the service to restart reloading the configuration file, but to

18 of 31 06/14/05 04:25

reload using the same parameters it originally used to start. This can be very useful if the service requires a
complex set of parameters to restart. The command to do this is:

kill HUP nnnn

Try using the ps command. See if there is anything you can stop by using the kill command. Note, you could
cause all sorts of interesting behavior if you do this with running services that you need. I suggest doing this
exercise as your standard user, not root, and then starting some program, finding it using "ps auxw| grep
progname" and then using kill to stop it.

Finally, some programs spawn many processes when running. Web browsers are an example of this. It can be
time-consuming to kill each process one-by-one until you have completely shut down the program. An alternate
command is "killall" which will kill processes by name. Naturally you have to be a bit careful with this as you
could shutdown something unexpectedly, but if you have 20 processes all called "Mozilla" that you want to
stop, then you can simply type:

killall mozilla

I suggest reading the man page ("man killall") about this command before using it regularly.

14.) Use top to see the state of your system [Top]

If you want to see what processes are using how many resources, then use the command:

$ top

Notice that not only do you get to see what’s running, but you get to see a bunch of system information as well
at the top of the screen. For instance, on my laptop running KDE this is some of what I might see:

last pid: 2707; load averages: 0.17, 0.26, 0.19 up 0+01:43:52 01:16:24
47 processes: 1 running, 46 sleeping
CPU states: % user, % nice, % system, % interrupt, % idle
Mem: 98M Active, 104M Inact, 55M Wired, 20M Cache, 47M Buf, 91M Free
Swap: 700M Total, 700M Free

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 2421 root 96 0 27988K 19980K select 0:14 0.24% 0.24% Xorg
 2699 root 96 0 28792K 19388K select 0:01 0.10% 0.10% kdeinit
 2476 root 20 -76 13456K 8680K kserel 0:09 0.00% 0.00% artsd
 2506 root 96 0 36344K 26120K select 0:06 0.00% 0.00% kdeinit
 2504 root 96 0 10444K 8644K select 0:04 0.00% 0.00% emacs
 2488 root 96 0 28724K 20116K select 0:03 0.00% 0.00% kdeinit
 2467 root 96 0 26904K 17772K select 0:03 0.00% 0.00% kdeinit
 2480 root 96 0 32100K 20392K select 0:03 0.00% 0.00% kdeinit
 2499 root 96 0 28792K 19276K select 0:02 0.00% 0.00% kdeinit
 2484 root 96 0 26228K 17576K select 0:02 0.00% 0.00% kdeinit
 2486 root 96 0 27044K 18636K select 0:01 0.00% 0.00% kdeinit
 2267 root 96 0 1232K 688K select 0:01 0.00% 0.00% moused
 2498 root 96 0 27736K 18428K select 0:01 0.00% 0.00% korgac
 2491 root 96 0 25692K 17140K select 0:01 0.00% 0.00% kdeinit
 2494 root 96 0 25160K 16240K select 0:00 0.00% 0.00% kdeinit
 2483 root 96 0 24836K 15896K select 0:00 0.00% 0.00% kdeinit
 2458 root 96 0 24020K 14412K select 0:00 0.00% 0.00% kdeinit
 2461 root 96 0 23408K 13836K select 0:00 0.00% 0.00% kdeinit
 2464 root 96 0 24844K 15132K select 0:00 0.00% 0.00% kdeinit
 2500 root 5 0 2388K 1852K ttyin 0:00 0.00% 0.00% csh
 2057 root 96 0 1784K 1188K select 0:00 0.00% 0.00% dhclient
 2700 root 20 0 2272K 1624K pause 0:00 0.00% 0.00% csh
 2432 root 8 0 1640K 1112K wait 0:00 0.00% 0.00% sh
 2414 root 8 0 1612K 1184K wait 0:00 0.00% 0.00% login
 2100 root 96 0 1312K 812K select 0:00 0.00% 0.00% syslogd
 2416 root 5 0 2276K 1680K ttyin 0:00 0.00% 0.00% csh
 2489 root 96 0 24836K 14780K select 0:00 0.00% 0.00% kdeinit
 2481 root 8 0 1312K 708K nanslp 0:00 0.00% 0.00% kwrapper
 2422 root 8 0 2652K 1640K wait 0:00 0.00% 0.00% kdm
 2233 root 8 0 1356K 964K nanslp 0:00 0.00% 0.00% cron
 2419 root 96 0 2332K 1168K select 0:00 0.00% 0.00% kdm
 2707 root 96 0 2256K 1416K RUN 0:00 0.00% 0.00% top
 2353 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty
 2415 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty

19 of 31 06/14/05 04:25

 2303 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty
 2307 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty
 2304 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty
 2306 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty
 2305 root 5 0 1280K 832K ttyin 0:00 0.00% 0.00% getty

That’s a lot of information, but top will very quickly give you a feel for your overall system state, what’s using
most of your resources, whether you have a user who is hogging your cpu, another your memory, etc. Pay
special attention to things like load averages and RAM usage.

Load averages are listed for the past 1, 5, and 15 minutes. Numbers from 1.0 to less are generally OK. If you
start to see consistent load averages around 2, or above, then your machine is very busy and you probably need
to consider tuning one of your subsystems, improving hardware, buying a new machine, or checking for
inefficient use of resources.

Several other ways to see load averages and machine usage include:

$ w

$ uptime

Try using "w" and "uptime" and read the man pages for these commands.

15.) Create a file and use vi to edit the file [Top]

For this exercise please login as your username. Type whoami or id if you are not sure if you are logged in as
root.If you are logged in as root, then type:

exit

$ Login: username

Now we are going to open an empty file and write something in it.

The vi editor uses "modes"

This is a critical point. The vi editor has two modes. These are:

Command mode
Input mode

To go back and forth between these modes when you are in vi you can press:

ESCape key (command mode)
Letter "i" for Input mode, letter "o" for input mode with newline below cursor

Remember this as it is confusing. The easiest thing to do when you get confused in vi is to press the ESCape key
a couple of times and start over.

Now let’s do the following:

$ cd /home/username<
$ touch temp.txt
$ vi temp.txt

Now you are in vi. Press the "i" key to switch to input mode.

Type something like, "VI is great! I think I’ll be using vi from now on instead of Microsoft Word."

Press ENTER to add lines. Type some more stuff, whatever you like.

Here is a short list of vi commands:

20 of 31 06/14/05 04:25

Open: vi fn, vi -r fn, vi + fn, vi +n fn, vi +/pat fn
Close: :w, :w!, :wq, :wq!, :q, :q!
Movement: h,j,k,l, w, W, b, B, :n
Editing: i, o, x, D, dd, yy, p, u
Searching: /pattern, ?pattern, n, N

OK, let’s save the file that you are in. To do this do:

Press the ESCape key to get in to command mode

Press ":" to get ready to issue a file command

Type "w" and press ENTER to save your file.

Press ":" to get back to the prompt to issue a file command

Press "q" to quite the file

Instead of the multiple steps you could have type ":wq" to write and quite at the same time. If you need to quit a
file without saving it after you’ve made changes, then you press :q!. For many people this is the most important
command to remember in vi :-).

Below is a more complete vi cheat sheet. In addition you will be receive a vi summary book as part of the book
package for this workshop.

 vi Cheat Sheet

Open:

vi filename (fn=filename)
vi -r filename Recover a file from a crashed session
vi + filename Place the cursor on last line of file.
vi +n filename Place the cursor on line "n" of file.
vi +/pat filename Place cursor on first occurrence of "pat"tern

Close:

:w Write the file to disk. Don’t exit.
:w! Write the file to disk even if read/only.
:wq Write the file to disk and exit.
:wq! Write the file to disk even if read/only and quit.
:q Quit the file (only if no changes).
:q! Quite the file even if changes.

Movement:

A Move to end of line, change to insert mode.
h Move 1 space backwards (back/left arrow).
j Move down 1 line (down arrow).
k Move up 1 line (up arrow).
l Move 1 space forwards (forward/right arrow)
w Move cursor to start of next word.
W Same as "w".
b Move cursor to start of previous word.
B Same as "b".
:n Go to line number "n" in the file.

Editing:

i Enter in to input mode.
o Add a line below cursor and enter in to input mode.
x Delete character (del key in some cases).
D Delete line from right of cursor to end of line.
dd Delete entire line.
u Undo last edit or restore current line.
p Put yanked text before the cursor.
yy Yank current line.

Searching:

/pattern Search for "pattern" in the file going forwards.
?pattern Search for "pattern" in the file going backwards.
n Find the next occurrence of pattern found forwards.
N Find next occurrence of patter found backwards.

21 of 31 06/14/05 04:25

Copy/Cut and Paste
nyyp Copy n lines to buffer, paste below cursor
nyyP Copy n lines to buffer, paste above cursor
nddp Cut n lines and copy to buffer, paste below cursor
nddP Cut n lines and copy to buffer, paste above cursor

Now let’s go back in to the file you were just editing. To do this type:

$ vi temp.txt

Play with moving around. Move your cursor to a line with text and see what happens when you go in to
command mode (ESCape) and use "w" or "W" or "b" or "B" - remember, to get in to command mode press the
ESCape key.

Now press "/" and type a word that is in your document, then press ENTER. What happens?

Do the same, but press the "?" key at first. Use ESCape to start in command again again if necessary.

To save your file press the ":" key and next type "w" and enter . .

To exit and save do:

:wq

To exit and not save anything (lose all changes you have made since the last save) do:

:q!

But, try to save your file for later use. Practice saving, exiting, opening a file in vi again, etc.

16.) Using vipw to edit a user entry [Top]

You need to be logged in as root for this exercise.

When you log in as root, or one of the userids you created on your box you are automatically given a "shell" in
which to work. There are many different shell environments under Unix and each one has its own unique set of
features and commands. The root user should log in using the "csh" shell (located in /bin/csh). This is to ensure
that a shell is always available to this account if there are problems and not all filesystems can be mounted. The
general user, however, can take advantage of some more powerful shell programs, such as bash. Bash (under
FreeBSD) resides in the /usr/local/bin directory. This directory may not be available if there are problems at
system boot time, thus it is not recommended that you switch your root account to use bash.

One of the nicest features of bash is (remember?) "command completion" - This allows you to type some piece
of a command then press the tab key to complete the command. If there is more than one possibility you press
the tab key twice in rapid succession and all possible completions will be displayed. When we were installing
bash from /cdrom/pkgs/editors and the filename was "bash-3.0.16_1.tbz" this feature can be very useful. If you
are using the bash shell, then rather than having to type "bash-3.0.16_1.tbz" exactly, you could have simply
typed:

pkg_add /cdrom/packages/All/bash

and pressed the tab key to complete the command. In addition, you can press tab twice to see all possibilities in
a directory, which can be useful when trying to decide if you are in the right place.

Earlier we switched your account to use the bash shell, but let’s look at another way to do this. In addition, at
this point you could change the name associated with your username, and other items as well. Rather than use
the "pw usermod" command we are going to use "vipw". This command will open the file /etc/passwd using the
vi editor, but with a wrapper process that prevents other users from updating the file while we are editing it. This
is important because if two people on your system tried to edit /etc/passwd at the same time, then it could
become corrupted, which could cause problems for everyone attempting to log in to your system.

22 of 31 06/14/05 04:25

So, let’s edit /etc/passwd using the vi editor:

vipw

Now you will be in the /etc/passwd file. You can scroll down to the line that contains your username entry to get
ready to make some changes. The line will look something like this:

username:#1#swefo/qx#IUYRRAD09DAAD.:1001:0::0:0:User &:/home/username:/usr/local/bin/bash

In this case notice that the name position does not contain any real meaningful information. We could change
this to read:

username:#1#swefo/qx#IUYRRAD09DAAD.:1001:0::0:0:New User:/home/username:/usr/local/bin/bash

In addition, note that the last entry on this line is ":/usr/local/bin/bash" - this indicates that the bash shell will be
used for this account. If you wanted to switch this account back to using the "sh" shell you could change the line
to read:

username:#1#swefo/qx#IUYRRAD09DAAD.:1001:0::0:0:New User:/home/username:/bin/sh

But, I would not recommend this as the bash shell is much nicer.

To exit from the /etc/passwd file issue the vi command:

:q (to quit if no changes made)
:wq (to write changes and quite)
:q! (to quit and not save changes if any made)

It is your choice whether you wish to use the vipw or the pw command to manipulate your user’s accounts.

Now, assuming you left the shell for your account as /usr/local/bin/bash, log out as the root user and log back in
using your userid. You can either type logout or exit to do this.

Try playing around a bit with bash. For instance, type:

$ ls /

Then hit the tab key twice quickly to see all the directories under the root or "/" directory. We’ll be stressing the
use of command completion repeatedly throughout the week. This is one the largest timesavers available to you
when using the Unix command-line environment.

17.) Practice with basic filesystem commands [Top]

Be careful in this exercise. Running as root means that you can easily damage your system, so we ask that you
log out of your root account and log in as your own user account instead.

If you are not sure of a command ask the instructor or helpers before continuing.

The first command that we are going to use is man, this is short for "man"ual. Read about each command to see
the range of options that exist. We’ve already been using man, but now we’ll practice some more:

Many of the basic commands we’ll be practicing are built in as part of your shell environment (that is you won’t
find a binary file for cd). To read about commands like cp, cd, ls, mv, rm in more detail you can just type:

$ man builtin

And, for a command like ls you can type:

$ man ls

23 of 31 06/14/05 04:25

And, even for a built-in command you can just type "man commandName", or something like:

$ man cd

and this will open the "builtin" man page for you.

If you have problems exiting from "man" press the "q" key. Also, you can use the keyboard arrows to move
around in the descriptions.

As we move around directories an extremely useful command is pwd, which return the working directory name
you are in. So, if you get lost just type:

$ pwd

We’ll do this from time to time as we use directory commands.

Now we are ready to practice a bit with the commands:

$ cd /
$ pwd
$ ls
$ ls -la
$ cd /tmp
$ cd ..
$ pwd
$ cd tmp

What’s going on here? If you don’t understand, ask.

$ cd (take you back to your home directory)
$ pwd
$ touch text.txt
$ cp text.txt new.txt
$ mv text.txt new.txt

What’s happening now? If prompted to overwrite, respond "y". Note that "userid" is the name of the user
account you created in the first exercise.

$ cp text.txt /home/username/.
$ cd ../home/username

Now play with the use of the tab key. For example, in /home/username start to type the first part of the
command "cp text.txt text.txt.bak" - then, type:

$ cd (to return to our home directory)
$ cp te
$ cp text.txt te
$ cp text.txt text.txt.bak

The tab key makes life much easier. Now type:

$ cd
$ mkdir tmp
$ mv text.* tmp/.
$ ls

Finally, we are going to remove the directory that contains the two archives.

$ cd tmp
$ rm *
$ cd ..
$ rmdir tmp

You can force this using a command like this:

$ rm -rf tmp

The use of "rm -rf" is very dangerous!, and, naturally, very useful. For example, if you are "root" and you type

24 of 31 06/14/05 04:25

"rm -rf /*" this would be the end of your server. This commands says "remove, forcibly and recursively,
everything" - Or, if you start in the root directory (/), remove all files and directories without asking on the entire
server. If you want to use "rm -rf *" always take a deep breath and check where you are first (really, do this!):

$ pwd

First this says in what directory you are. If you are mistaken, then you have the opportunity to not remove files
that you might really need.

18.) Command pipes and grep [Top]

There are a few items that you are going to be using during the week, and which you may have already seen in
use, that are important to understand. The first item is the concept of command pipes. The other item is the use
of the search facility grep. First let’s talk about grep.

The grep command allows you to search for items in files, or in output from another command. For instance, to
see all instances of the string "pop" in the file /etc/services (lists services and corresponding tcp/udp ports) you
can type the command:

$ grep pop /etc/services

And you should see each line in the file that contains the string "pop" (including substrings of "pop") displayed.
It will look somethig like this:

pop3pw 106/tcp 3com-tsmux #Eudora compatible PW changer
pop2 109/tcp postoffice #Post Office Protocol - Version 2
pop2 109/udp postoffice #Post Office Protocol - Version 2
pop3 110/tcp #Post Office Protocol - Version 3
pop3 110/udp #Post Office Protocol - Version 3
hybrid-pop 473/tcp
hybrid-pop 473/udp
pop3s 995/tcp spop3 # pop3 protocol over TLS/SSL
pop3s 995/udp spop3
kpop 1109/tcp #Unofficial
kpop 1109/udp #Unofficial

If you want to check for all occurrences of the string "ssh" in all files in a directory you could do something like:

$ grep ssh /etc/rc.d/*

Scroll through the list of output and you’ll see that the file /etc/rc.d/sshd (startup script file) is the only file with
this string in it. Note that when you do a wildcard search on files, then files that contain the string are indicated
in the left-hand column of the output.

Now maybe you are looking for more than one word in a file. Or, perhaps, you figure you need more than one
word to make your search unique. For instance, each time you login on your machine you get a welcome
message that starts out with the text "Welcome to FreeBSD". Perhaps you are wondering where this message
comes from. Well, as much of your initial system configuration is done by files located in /etc/ this might be a
reasonable place to look. So, to search for the file with this string you could type:

$ grep "Welcome to FreeBSD" /etc/*

and you will get back:

/etc/motd:Welcome to FreeBSD!

and now you know that the string resides in the file /etc/motd. Type:

$ man motd

to read about this file, known as the Message Of The Day file, or "motd".

Remember when we did "grep ssh /etc/rc.d/*"? Did you notice that the results filled more than a screen in your

25 of 31 06/14/05 04:25

terminal? Well, let’s use the concept of the pipe facility to help us out. The pipe facility is the ability to take the
output of one command (or stream of information) and "pipe" it to another command. For instance, the output
from "grep ssh /etc/rc.d/*" can be "piped" to the more command so that the screen will pause as the results are
being shown. The pipe facility is accessed using the symbol "|" (usually above the "\" character). So, if you do:

$ grep ssh /etc/rc.d/* | more

Now your output will pause and you’ll have an easier time seeing what is happening.

Remember when we did the following in the second exercise?:

$ pkg_info | grep lynx

Now you should understand better what this is doing. But, if you are not sure do this:

$ pkg_info | more

And, you’ll note that there is a long list of packages installed on your machine. The use of the "| more" let’s you
view them one page at a time. But, if you were just trying to figure out if something by the name "lynx" was
installed, then using pipe with grep to seach the output of the "pkg_info" command can make your life much
easier. So, the command "pkg_info | grep lynx" is simply searching the output of the pkg_info command for the
string "lynx" and only displaying results with "lynx". Thus, when you type this command you should see
something like:

$ lynx-2.8.5 A non-graphical, text-based World-Wide Web client

which is really useful. Now you know the correct name for the lynx package installed is "lynx-2.8.5" and you
know what it is.

So, now that you have the correct name you can get the detailed package information quickly by typing:

$ pkg_info lynx-2.8.5

If you just type "pkg_info lynx" this won’t work as pkg_info wants either the exact name, or the form "pkg_info
lynx*".

We’ll use grep and pipes through the week. For instance you’ll see us discussing commands that output lots of
data. Getting a handle on this data is often done using pipes and commands like grep, more, etc.

Remember, as usual, if you want to know more type:

$ man grep

19.) Searching for more information about your system [Top]

If you want to see the contents of a file there are three typical ways to do this:

$ cat
$ less
$ more

Each of these commands has it’s own features:

cat: or conCATentate a file. By default to the screen. The cat command will display the contents of
almost any file, including files that are "open". In some cases if you use more or less, file contents will not
be properly dispaly. In addition, cat displays a file without first clearing your screen - something that can
be annoying about less and more if you just want to look in a small file and keep what’s on the screen
visible.
less: Lets you scroll back and forth while displaying a file. Let’s you search (like in vi) while seeing the
ocntents of a file. Pauses after each screen of information.
more: is similar to less, but with less functionality. Basically more simply pauses after each screen of

26 of 31 06/14/05 04:25

information and you can scroll by pressing the space-bar for each new screenful of information.

the typical saying is to remember that "less is more" when it comes to Unix.

Test this using the three commands using them with an informational file like:

$ cd /etc
$ cat motd
$ more services (youcan exit with "q")
$ less services (you can exit with "q")

Try looking at some more files, for instance, fstab, rc.conf, termcap, etc. If you don’t understand what you are
looking at, then use the "man" command. For example, type:

$ man fstab
$ man rc.conf
$ man termcap

Finally, there is one other useful command for looking inside files. First make sure that you are root:

su -

Now, as root, type:

tail /var/log/messages

This will show you the last few lines of your main logfile on your system. This can be really useful if you just
want to see what the last thing written to a file was. Your file /var/log/messages will get very large over time, so
if you used cat, less, or more to view this file for new messages this could become very time-consuming. Now,
even more fun is to do the following:

tail -f /var/log/messages

Now press ALT-FN (say "F3") to go to one of your virtual terminals. Login as root on this terminal. Now go
back to your original terminal where you typed the command tail -f /var/log/messages. You should see a
message on the screen saying that root just logged in. The "-f" option means, "output appended data as the file
grows" - or, you can watch each new item as it’s written to the end of a file. This is incredibly useful when you
are trying to debug problems and you need to see what happens in your logfiles in real time.

Don’t forget to log out of your other terminal window.

If you have any questions ask the instructor or one of the class helpers.

20.) File and directory permissions* [Top]

*Reference: Shah, Steve, "Linux Administration: A Beginner’s Guide", 2nd. ed., Osborne press, New York,
NY.

If you look at files in a directory using "ls -al" you will see the permissions for each file and directories. Here is
an example:

drwxrwxr-x 3 hervey hervey 4096 Feb 25 09:49 directory
-rwxr--r-- 12 hervey hervey 4096 Feb 16 05:02 file

The left column is important. You can view it like this:

Type User Group World Links owner group size date hour name
d rwx rwx r-x 3 hervey hervey 4096 Feb 25 09:49 directory
- rwx r r 12 hervey hervey 4096 Feb 16 05:02 file

So, the directory has r (read), w (write), x (execute) access for the user and group. For world it has r (read) and x
(execute) access. The file has read/write/execute access for the world and read only access for everyone else
(group and world).

27 of 31 06/14/05 04:25

To change permissions you use the "chmod" command. chmod uses a base eight (octal) system to configure
permsissions. Or, you can use an alternate form to specify permissions by column (user/group/world) at a time.

Permissions have values like this:

Letter Permission Value

R read 4
W write 2
X execute 1

Thus you can give permissions to a file using the sum of the values for each permssion you wish to give for
each column. Here is an example:

Letter Permission Value

--- none 0
r-- read only 4
rw- read and write 6
rwx read, write, and execute 7
r-x read and execute 5
--x Execute 1

This is just one column. Thus, to give all the combinations you have a table like this:

Permissions Numeric Description
 equivalent

-rw------- 600 Owner has read & execute permission.
-rw-r--r-- 644 Owner has read & execute.
 Group and world has read permission.
-rw-rw-rw- 666 Everyone (owner, group, world) has read & write
 permission (dangerous?)
-rwx------ 700 Onwer has read, write, & execute permission.
-rwxr-xr-x 755 Owner has read, write, & execute permission.
 Rest of the world has read & execute permission
 (typical for web pages or 644).
-rwxrwxrwx 777 Everyone has full access (read, write, execute).
-rwx--x--x 711 Owner has read, write, execute permission.
 Group and world have execute permission.
drwx------ 700 Owner only has access to this directory.
 Directories require execute permission to access.
drwxr-xr-x 755 Owner has full access to directory. Everyone else
 can see the directory.
drwx--x--x 711 Everyone can list files in the directory, but group
 and world need to know a filename to do this.

Now lets practice changing permissions to see how this really works. As a normal user (i.e. don’t login as root)
do the following:

$ cd (what does the "cd" command do when you do this?)
$ echo "test file" > read.txt
$ chmod 444 read.txt

In spite of the fact that the file does not have write permission for the owner, the owner can still change the
file’s permissions so that they can make it possible to write to it:

$ chmod 744 read.txt

Or, you can do this by using this form of chmod:

$ chmod u+w read.txt

The forms of chmod, to add permissions, if you don’t use octal numbers are:

$ chmod u+r, chmod u+w, chmod u+x
$ chmod g+r, chmod g+w, chmod g+x
$ chmod a+r, chmod a+w, chmod a+x

Note that "a+r" is for world access. The "a" is for "all", "u" is for "user", and "g" is for "group".

28 of 31 06/14/05 04:25

Now, change the file so that the owner cannot read it, but they can write to the file...

$ chmod u-r read.txt

Or, you can do something like:

$ chmod 344 read.txt

You probably noticed that you can use the "-" (minus) sign to remove permissions from a file.

Finally, there is a concept that when you execute a file you normally execute it using the permissions of the user
who does this. For example, if the user "carla" types "netstat", the netstat programs runs with their privileges.
But, if you want netstat to always run with the permissions of the owner or of the group of the netstat program,
then you can configure the "SetUID" or "SetGID" bit. You can do this using chmod. However, remember that
this can be a bad idea from the viewpoint of security...

To do this add a "4" to the chmod octal to set the SetUID, or a "2" to set the SetGID bit.

As an example, you could do (you must be root):

chmod 4755 /usr/bin/netstat

Naturally you would need to be root to do this, or you would have to use the "sudo" command.

And, to set the SetGID bit it would be:

chmod 2755 /usr/bin/netstat

After you do "sudo chmod 4755 /usr/bin/netstat" the permissions on the file would look like this:

-rwsr-xr-x 1 root kmem 106344 Feb 23 16:42 /usr/bin/netstat

Note the "s" in the owner column.

And, after you issue the command ""sudo chmod 2755 /usr/bin/nestat" the permissions look like this:

-rwxr-sr-x 1 root kmem 106344 Feb 23 16:42 /usr/bin/netstat

Note: This is for example only. Setting netstat to run with SetUID or SetGID bit set as shown would be a very
bad idea. So, if you have done SetUID or SetGID, then please unset these bits for netstat like this:

chmod 0755 /usr/bin/netstat

and now you would see:

-rwxr-xr-x 1 root kmem 106344 Feb 23 16:42 /usr/bin/netstat

21.) Commands - programs - shell - path [Top]

For this exercise we want you to run as a user other than root. So, if you are root do this:

su - user

What do you think the "-" does? (hint: "man su", and we talked about this earlier)

When you type a command or the name of a program the system looks for something with that name using in
the directories specified in your PATH environmental variable. Or, if the command is a built-in shell program
(such as "cd", see "man builtin"), then it will execute the command without needing to use the PATH variable.
To see your what your PATH is set to, do this:

$ printenv PATH

29 of 31 06/14/05 04:25

The PATH variable is configured when you login to your account in the file ".profile" in your home directory.

To see how this works let’s create a shell script that will run a simple command, but which resides in a directory
outside your PATH statement ("user" here is the name of your own userid).

$ cd /home/user
$ mkdir scripts
$ cd scripts
$ vi hello.sh

Now in the file add these lines:

#!/bin/sh
#

echo hello

Remember to save and exit the file (:wq). And, to ensure that you can execute the file use the command:

$ chmod u+x hello.sh

Remember that this is using chmod to set the eXecutable bit for the user only.

Now we are going to add the /home/user/scripts directory to our login profile PATH statement.

$ cd /home/user
$ vi .profile

Look for the line that reads (more or less - could be different on your machine):

PATH=/sbin:/bin:/usr/sbin:....:#HOME/bin; export PATH

and change it so that at the end of the PATH statement you add:

PATH=/sbin:/bin:/usr/sbin:....#HOME/bin:#HOME/scripts; export PATH

Save the file and now do the following:

$ hello.sh
$. .profile
$ hello.sh

What just happened? You changed the PATH statement to include /home/user/scripts, but when you tried to run
the script in /home/user/scripts it didn’t work. This was because you had not actually updated the PATH
variable in your shell. When you did ". .profile" you executed your user profile again, which updated the PATH
variable with your new PATH variable. You can verify this by typing "printenv PATH" again.

You may have noticed the "#HOME/bin" item in the PATH. As you can see FreeBSD has the concept that you
may wish to have your own personal bin directory for executables, so normally the "hello.sh" script might reside
in /home/user/bin, but for purposes of this exercise we used /home/user/scripts.

Finally, if you want to change something like the PATH for everyone you can do this in two ways. One, you
could update /etc/profile with a new PATH statement. This means that everyone on your system will see this
change as soon as they login the next time. Or, you can change /usr/share/skel/dot.profile so that all new
accounts have the new PATH, but previous users will not see this change. In both cases changes like this should
not be done lightly. When setting up a server with many users you will probably want to think about what
directories your users need to have in the PATH from the beginning and update /usr/share/skel/dot.profile before
creating initial user accounts.

In addition, you can run the "hello.sh" script by typing "/home/user/scripts/hello.sh" at any time.

To finish up we are going to change how the "rm" command runs to make it "safer" (in my opinion). Here are
the steps:

$ vi /home/user/.profile

30 of 31 06/14/05 04:25

Go to the end of the file and type an "o" (add a line after the cursor and put you in to input mode). Then type:

alias rm=’rm -i’;

Now exit and save the file (:wq). After that type:

$ touch temp.txt
$ rm temp.txt
$. .profile
$ touch temp.txt
$ rm temp.txt

And, what happened? Now the "rm" command asks you before you erase a file if you are sure you want to do
this. If you don’t like this you can remove the alias in the .profile, re-run .profile, and leave things as they were.
Note, you can always just use "rm -f" to force remove files and skip the prompt. My advice is to leave the "rm"
command in interactive mode - you are likely to be very thankful for this at some point in the future.

To be Done Last by Everyone

22.) Update your /user/ports collection using cvsup [Top]

As our final exercise we are going to ask you to update your entire ports collection on your machine. We are
going to use the cvsup package (not yet installed) to tell your machine to compare all the files in /usr/ports with
the files on a cvs server and then download any updates that may have been made. The ports collection is large
and if you attempted to do this over our classroom link it would take many hours, if not days, to complete. To
avoid this we have installed a local mirror of an up-to-date FreeBSD ports collection and cvs server on our
classroom server. We are going to use this machine to update our ports collection.

You need to be root to complete this exercise.

So, to go through this process you first need to install the cvsup-without-gui package. We have downloaded and
copied this to our local server. To install cvsup-without-gui do the following:

pkg_add ftp://noc/pub/FreeBSD/packages/All/cvsup-without-gui-16.1h_2.tbz

Next we need to configure your machine so that it will automatically look in the correct location for the cvs
server in our classroom to update your ports collection.

If you completed exercise 4, then this step should already be completed.

To do this first start by editing the file /etc/make.conf:

vi /etc/make.conf

And, scroll down to the bottom of the file. Now you should add the following two lines (remember "o" for input
mode in vi with a new line):

MASTER_SITE_BACKUP=ftp://noc.pacnog.school.fj/pub/FreeBSD/ports/distfiles/${DIST_SUBDIR}/
MASTER_SITE_FREEBSD=yes

Remember to replace "noc" with what was indicated at the start of these exercises. These last steps are not
technically necessary at this point as we are going to explicitly tell our cvsup process where to look for updated
ports file, but we make sure that the variables MASTER_SITE_BACKUP and MASTER_SITE_FREEBSD are
set so that when you install future ports using the make command the process will look on our local server for
files to download, and not go out to the freebsd.org site across our classroom link to the outside world.

If you are interested in how items are configured for doing things like updating your ports files, maybe your
FreeBSD source tree, etc. then have a look at the example files in /usr/share/examples/cvsup.

When we run cvsup, in this case, it is going to download updates to descriptive files only. Actually source is not
downloaded until you issue a make. This has been determined by the configuration in the example cvsup config

31 of 31 06/14/05 04:25

file we’ll use in our command below, which is /usr/share/examples/cvsup/ports-supfile.

Now that things are setup correctly, let’s start the ports package upgrade process using cvsup. Once you issue
this command you can leave your machine running as this may take some time to complete. The command to
issue is:

cvsup -g -L 2 -h noc /usr/share/examples/cvsup/ports-supfile

Specifics on the command (taken directly from "man cvsup"):

"-g": Disables the use of the graphical user interface. This option is implied if the DISPLAY environment
variable is not set.
"-L" verbosity: Sets the verbosity level for non-GUI output. A level of 0 causes cvsup to be completely
silent unless errors occur. A level of 1 (the default) causes each updated file to be listed. A level of 2
provides more detailed information about the updates performed on each file. All messages are directed to
the standard output. This option is ignored when the GUI is used.

Hervey Allen

Last modified: Tue Jun 14 04:25:07 CLT 2005

