Introduction to BGP

ISP/IXP Workshops
Border Gateway Protocol

- Routing Protocol used to exchange routing information between networks
- Described in RFC1771
- The Autonomous System is BGP’s fundamental operating unit

BGP

- Path Vector Protocol
- Incremental Updates
- Many options for policy enforcement
- Classless Inter Domain Routing (CIDR)
- Widely used for Internet backbone
- Autonomous systems
Path Vector Protocol

- BGP is classified as a *path vector* routing protocol (see RFC 1322)

 A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination.
Path Vector Protocol
Definitions

- **Transit** – carrying traffic across a network, usually for a fee
- **Peering** – exchanging routing information and traffic
- **Default** – where to send traffic when there is no explicit match in the routing table
Default Free Zone

The default free zone is made up of Internet routers which have explicit routing information about the rest of the Internet, and therefore do not need to use a default route.
A and B can peer, but need transit arrangements with D to get packets to/from C
Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique number
Autonomous System Number (ASN)

- An ASN is a 16 bit number
 - 1-64511 are assigned by the RIRs
 - 64512-65534 are for private use and should never appear on the Internet
 - 0 and 65535 are reserved
- 32 bit ASNs are coming soon
 - www.ietf.org/internet-drafts/draft-ietf-idr-as4bytes-09.txt
- ASNs are distributed by the Regional Internet Registries
 - Also available from upstream ISPs who are members of one of the RIRs
 - Current ASN allocations up to 38911 have been made to the RIRs
Demarcation Zone (DMZ)

- Shared network between ASes
BGP Basics

BGP speakers are called **peers**
BGP General Operation

• Learns multiple paths via internal and external BGP speakers
• Picks the best path and installs in the forwarding table
• Policies applied by influencing the best path selection
Constructing the Forwarding Table

- **BGP “in” process**

 receives path information from peers

 results of BGP path selection placed in the BGP table

 “best path” flagged

- **BGP “out” process**

 announces “best path” information to peers

- **Best paths installed in forwarding table if:**

 prefix and prefix length are unique

 lowest “protocol distance”
Constructing the Forwarding Table

- BGP in process
 - discarded
 - accepted
 - everything

- BGP table
- forwarding table

- BGP out process

bgp peer

in

out
eBGP & iBGP

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry
 some/all Internet prefixes across ISP backbone
 ISP’s customer prefixes
- eBGP used to
 exchange prefixes with other ASes
 implement routing policy
BGP/IGP model used in ISP networks

• Model representation
External BGP Peering (eBGP)

- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers
Configuring External BGP

Router A in AS100

```
interface ethernet 5/0
  ip address 102.102.10.2 255.255.255.240
!
router bgp 100
  network 100.100.8.0 mask 255.255.252.0
  neighbor 102.102.10.1 remote-as 101
  neighbor 102.102.10.1 prefix-list RouterC in
  neighbor 102.102.10.1 prefix-list RouterC out
!```

- **Local ASN**: 100
- **Remote ASN**: 101
- **Inbound and outbound filters**: Prefix-list RouterC

**ip address on ethernet interface**: 102.102.10.2

**Local ASN**: 100

**Remote ASN**: 101

**ip address of Router C ethernet interface**: 102.102.10.2

**Inbound and outbound filters**: Prefix-list RouterC
Configuring External BGP

Router C in AS101

```
interface ethernet 1/0/0
 ip address 102.102.10.1 255.255.255.240
!
router bgp 101
 network 100.100.8.0 mask 255.255.252.0
 neighbor 102.102.10.2 remote-as 100
 neighbor 102.102.10.2 prefix-list RouterA in
 neighbor 102.102.10.2 prefix-list RouterA out
!
```

- **ip address on ethernet interface**
- **Local ASN**
- **Remote ASN**
- **ip address of Router A ethernet interface**
- **Inbound and outbound filters**
Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
  - IGP takes care of inter-BGP speaker connectivity
- iBGP speakers need to be fully meshed
  - they originate connected networks
  - they do not pass on prefixes learned from other iBGP speakers
Internal BGP Peering (iBGP)

- Topology independent
- Each iBGP speaker must peer with every other iBGP speaker in the AS
Peering to Loop-back Address

• Peer with loop-back address
  Loop-back interface does not go down – ever!

• iBGP session is not dependent on state of a single interface

• iBGP session is not dependent on physical topology
Configuring Internal BGP

Router A in AS100

interface loopback 0
  ip address 105.3.7.1 255.255.255.255
!
router bgp 100
  network 100.100.1.0
  neighbor 105.3.7.2 remote-as 100
  neighbor 105.3.7.2 update-source loopback0
  neighbor 105.3.7.3 remote-as 100
  neighbor 105.3.7.3 update-source loopback0
!
Configuring Internal BGP

Router B in AS100

```
interface loopback 0
 ip address 105.3.7.2 255.255.255.255
!
router bgp 100
 network 100.100.1.0
 neighbor 105.3.7.1 remote-as 100
 neighbor 105.3.7.1 update-source loopback0
 neighbor 105.3.7.3 remote-as 100
 neighbor 105.3.7.3 update-source loopback0
!
```
Inserting prefixes into BGP

• Two ways to insert prefixes into BGP
  redistribute static
  network command
Inserting prefixes into BGP – redistribute static

• **Configuration Example:**
  
  ```
 router bgp 100
 redistribute static
 ip route 102.10.32.0 255.255.254.0 serial0
  ```

• **Static route must exist before redistribute command will work**

• **Forces origin to be “incomplete”**

• **Care required!**
Inserting prefixes into BGP – redistribute static

• Care required with redistribute!
  redistribute <routing-protocol> means everything in the <routing-protocol> will be transferred into the current routing protocol
  Will not scale if uncontrolled
  Best avoided if at all possible
  redistribute normally used with “route-maps” and under tight administrative control
Inserting prefixes into BGP – network command

- Configuration Example
  
  router bgp 100
  
  network 102.10.32.0 mask 255.255.254.0
  
  ip route 102.10.32.0 255.255.254.0 serial0

- A matching route must exist in the routing table before the network is announced

- Forces origin to be “IGP”
Configuring Aggregation

- Three ways to configure route aggregation
  redistribute static
  aggregate-address
  network command
Configuring Aggregation

- Configuration Example:

  ```
 router bgp 100
 redistribute static
 ip route 102.10.0.0 255.255.0.0 null0 250
  ```

- static route to “null0” is called a pull up route
  packets only sent here if there is no more specific match in the routing table
  distance of 250 ensures this is last resort static
care required – see previously!
Configuring Aggregation – Network Command

• Configuration Example
  
  router bgp 100
  
  network 102.10.0.0 mask 255.255.0.0
  
  ip route 102.10.0.0 255.255.0.0 null0 250

• A matching route must exist in the routing table before the network is announced

• Easiest and best way of generating an aggregate
Configuring Aggregation – aggregate-address command

- **Configuration Example**
  
  ```
 router bgp 100
 network 102.10.32.0 mask 255.255.252.0
 aggregate-address 102.10.0.0 255.255.0.0 [summary-only]
  ```

- Requires more specific prefix in BGP table before aggregate is announced

- `{summary-only}` keyword
  
  optional keyword which ensures that only the summary is announced if a more specific prefix exists in the routing table
Historical Defaults – Auto Summarisation

- Disable historical default 1
- Automatically summarises subprefixes to the classful network when redistributing to BGP from another routing protocol
  
  **Example:**

  61.10.8.0/22 → 61.0.0.0/8

- **Must** be turned off for any Internet connected site using BGP

  ```
 router bgp 100
 no auto-summary
  ```
Historical Defaults – Synchronisation

• **Disable historical default 2**

• **In Cisco IOS, BGP does not advertise a route before all routers in the AS have learned it via an IGP**

• **Disable synchronisation if:**
  
  AS doesn’t pass traffic from one AS to another, or
  All transit routers in AS run BGP, or
  iBGP is used across backbone
  
  `router bgp 100`
  `no synchronization`
Summary
BGP neighbour status

Router1>sh ip bgp sum
BGP router identifier 100.1.15.224, local AS number 10
BGP table version is 27, main routing table version 27
14 network entries using 1582 bytes of memory
14 path entries using 672 bytes of memory
3/2 BGP path/bestpath attribute entries using 324 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 2578 total bytes of memory
BGP activity 17/3 prefixes, 22/8 paths, scan interval 60 secs

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/PfxRcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.1.31.224</td>
<td>4</td>
<td>10</td>
<td>195</td>
<td>193</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>03:09:48</td>
<td>1</td>
</tr>
<tr>
<td>100.1.63.224</td>
<td>4</td>
<td>10</td>
<td>71</td>
<td>70</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>01:05:31</td>
<td>1</td>
</tr>
<tr>
<td>100.2.15.224</td>
<td>4</td>
<td>10</td>
<td>46</td>
<td>47</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>00:17:00</td>
<td>1</td>
</tr>
</tbody>
</table>

...
Summary

• BGP4 – path vector protocol
• iBGP versus eBGP
• stable iBGP – peer with loopbacks
• announcing prefixes & aggregates
• no synchronization & no auto-summary
Introduction to BGP

ISP/IXP Workshops