IPv6 Deployment Planning

> Philip Smith PacNOG 10, Nouméa 21st November 2011

Introduction

- Presentation introduces the high level planning considerations which any network operator needs to be aware of prior to deploying IPv6
- Content applicable for:
 - Business decision makers
 - Network managers
 - Network engineers
 - Will also require implementation detail

Agenda

Network Audit
Network Optimisation
Procuring IPv6 Address Space
IPv6 Address plan
Deployment
Seeking IPv6 Transit
Customers

Network Audit

What can run IPv6 today, and what needs to be upgraded?

Audit

■ First step in any deployment:

- Audit existing network infrastructure
- Primarily routers across backbone
 - Perhaps also critical servers and services (but not essential as initial focus is on routing infrastructure)

Process

Analyse each location/PoP

Document

- Router or any other L3 device
- RAM (installed and used)
- FLASH memory
- Software release versions
- Most network operators already keep track of this info
 If not, RANCID (www.shrubbery.net/rancid/) makes this very easy

Sanity check

- Check existing connectivity
- Remove unused configuration
- Shutdown and clean up unused interfaces

Software Issues

- Does the existing software have IPv6 support?
 - Yes: deployment is straightforward
 - No: investigate cost of upgrade
- Is a software upgrade available?
 - Yes: is hardware suitably specified?
 - No: hardware replacement
- Implement software upgrade
 - Budget, purchase & schedule installation

Hardware Issues

Can hardware specification be upgraded?

- (this is usually memory on CPU and line cards)
- Yes: budget, purchase, installation
- No: hardware replacement
- Hardware replacement:
 - Assess suitable replacement product
 - Analyse impact on operating network, existing services and customer

Result

- Once the previous steps are completed, entire network is running IPv6 capable software
- Deployment of IPv6 can now begin

Network Optimisation

Is the IPv4 network the best it can be?

Optimisation

- IPv4 networks have been deployed and operational for many years
 - Your network may fall into this category
- Optimisation means:
 - Does the interior routing protocol make sense?
 - Do all routing protocols have the latest best practices implemented?
 - Are the IGP metrics set so that primary and backup paths operate as expected?

Motivation for Optimisation

IPv6 deployment will be dual stack

- Which means sitting alongside existing IPv4 configurations
- Aim is to avoid replicating IPv4 "shortcuts" or "mistakes" when deploying IPv6
 - IPv6 configuration will replicate existing IPv4 configuration
- Improvements in routing protocol BCPs should be deployed and tested for IPv4
 - Take the opportunity to "modernise" the network

Procuring IPv6 address space

Now we need addresses...

Where to get IPv6 addresses

The Regional Internet Registries:

Africa

- AfriNIC http://www.afrinic.net
- Asia and the Pacific
 - APNIC http://www.apnic.net
- North America
 - ARIN http://www.arin.net
- Latin America and the Caribbean
 - LACNIC http://www.lacnic.net
- Europe and Middle East
 - RIPE NCC http://www.ripe.net/info/ncc

From your upstream ISP

Getting IPv6 address space

- Become a member of your Regional Internet Registry and get your own allocation
 - Require a plan for a year ahead
 - General allocation policies are outlined in RFC2050, more specific details for IPv6 are on the individual RIR website
 - Receive a /32 (or larger if you will have more than 65k /48 assignments)

or

- Take part of upstream ISP's PA space
 - Get one /48 from your upstream ISP
 - More than one /48 if you have more than 65k subnets
- There is plenty of IPv6 address space

Address Planning

IPv6 address space available to each network operator is large compared with IPv4

- Design a scalable plan
- Be aware of industry current practices
- Separation of infrastructure and customer addressing

Addressing Plans – Infrastructure

- Network Operators should procure a /32 from their RIR
- Address block for infrastructure
 - /48 allows 65k subnets in the backbone
- Address block for router loop-back interfaces
 - Number all loopbacks out of one infrastructure /64
 - /128 per loopback
- Point-to-point links
 - /64 reserved for each, address as a /127
- LANs
 - /64 for each LAN

Addressing Plans – Customer

Customers get one /48

- Unless they have more than 65k subnets in which case they get a second /48 (and so on)
- Industry standard for customer assignments today:
 - /64 for just one LAN
 - /60 for a small network
 - /56 for a medium network
 - /48 for a large network

Deploying IPv6

Now we put it onto the network

IPv6 Deployment

- Number all the infrastructure interfaces according to the established addressing plan
 - No customers yet
- Secure routers and L3 devices for IPv6 access
- Enable IPv6 internal routing protocols
 - First IGP care needed not to break IPv4 connectivity
 - iBGP should replicate IPv4 iBGP
- Check that operation compares with IPv4 operation
 - Fix any problems in a dual stack network the protocols must function the same way

Seeking IPv6 Transit

Hello World, I'd like to talk to you...

Seeking Transit

- ISPs offering native IPv6 transit are still in the minority
- Next step is to decide:
 - To give transit business to those who will accept a dual stack connection

or

To stay with existing IPv4 provider and seek a tunnelled IPv6 transit from an IPv6 provider

Either option has its challenges

Dual Stack Transit Provider

Fall into two categories:

- A. Those who sell you a pipe over which you send packets
- B. Those who sell you an IPv4 connection and charge extra to carry IPv6
- ISPs in category A are much preferred to those in category B
- Charging extra for native IPv6 is absurd, given that this can be easily bypassed by tunnelling IPv6
 - IPv6 is simply protocol 41 in the range of IP protocol numbers

Dual Stack Transit Provider

Advantages:

- Can align BGP policies for IPv4 and IPv6 perhaps making them more manageable
- Saves money they charge you for bits on the wire, not their colour

Disadvantages:

Not aware of any

Separate IPv4 and IPv6 transit

- Retain transit from resolute IPv4-only provider
 - You pay for your pipe at whatever \$ per Mbps
- Buy transit from an IPv6 provider
 - You pay for your pipe at whatever \$ per Mbps
- Luck may uncover an IPv6 provider who provides transit for free
 - Getting more and more rare as more ISPs adopt IPv6

Separate IPv4 and IPv6 transit

Advantages:

- Not aware of any
- But perhaps situation is unavoidable as long as main IPv4 transit provider can't provide IPv6
- And could be a tool to leverage IPv4 transit provider to deploy IPv6 – or lose business

Disadvantages:

- Do the \$\$ numbers add up for this option?
- Separate policies for IPv4 and IPv6 more to manage

Customer Connections

Network is done, now let's connect paying customers...

Customer Connections

Giving connectivity to customers is the biggest challenge facing all ISPs

- Needs special care and attention, even updating of infrastructure and equipment
 - Cable/ADSL
 - Dial
 - Leased lines
 - Wireless Broadband

IPv6 to Broadband Customers

Method 1: Use existing technology and CPE

- This is the simplest option it looks and feels like existing IPv4 service
- PPPoE v6 + DHCPv6 PD
- Used by ISPs such as Internode (AU) and XS4ALL (NL)
- Issues:
 - IPv6 CPE are generally more expensive (not the "throwaway" consumer devices yet)
 - Cheaper CPE have no IPv6 yet need to be replaced/ upgraded

IPv6 to Broadband Customers

Method 2: use 6rd

- This is for when Broadband infrastructure cannot be upgraded to support IPv6
- Used by ISPs such as FREE (FR)
- Example:
 - 2001:db8:6000::/48 assigned to 6rd
 - Customer gets 192.168.4.5/32 by DHCP for IPv4 link
 - IPv6 addr is 2001:db8:6000:0405::/64 for their LAN (taking last 16 bits of IPv4 address)
 - DHCPv6 PD can be used here too (eg to give /56s to customers)

Issues:

All CPE needs to be replaced/upgraded to support 6rd

IPv6 to Dialup Customers

Use existing technology:

- Most dialup access routers are easily upgradable to support IPv6
- Service looks and feels like the IPv4 service
- PPPv6 with DHCPv6 PD (perhaps)
- CPE is usually PC or laptop (and most OSes have supported IPv6 for many years)
- Service already offered for several years by many ISPs

IPv6 to Fixed Link Customers

Use existing technology:

- Most access routers (PE) and Customer routers (CPE) are easily upgradeable or replaceable to include IPv6 support
- Service looks and feels like existing IPv4 service
- Configuration options:
 - IPv6 unnumbered on point to point links (or address them)
 - Static routes, subnet size according to business size
 - Or use BGP with private or public (multihomed) ASN
 - Whatever is done for IPv4 should be repeated for IPv6
- Fixed link Customers are probably the easiest to roll IPv6 out to
 - Customer deploying IPv6 within their own networks is a separate discussion (rerun of this presentation!)

IPv6 to Customers

- What about addressing? Here is a typical strategy:
 - Mobile Device:
 - □ /64 = 1 subnet
 - Home/Small Organisation:
 - /60 = 16 subnets
 - **Reserve the whole /56**
 - Reserve a /48 for small orgs = 256 small orgs per /48
 - Medium Organisation:
 - /56 = 256 subnets
 - **Reserve the whole /48**
 - Large Organisation:
 - □ /48 = 65536 subnets

Customer Connections

What about customer end systems?

- Is IPv6 available on all their computers and other network connected devices?
- How to migrate those which aren't?
- How to educate customer operations staff
- What about their CPE?
- What about the link between your edge device and their CPE?
- What about security?

Conclusion

We are done...!

Conclusion

- When deploying IPv6 for the first time, a strategy and planning are of paramount importance
- Presentation has highlighted the steps in the planning and presentation process
 - Variations on the theme are quite likely there is no single correct way of proceeding