DNS Best Practices

Mike Jager Network Startup Resource Center mike@nsrc.org

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Authoritative server

- Gives answers for specific zones
 - "authoritative" for these zones
- Only respond to queries for these zones
- Never ask other DNS servers anything
- A server can be authoritative for >1 zone
- A zone should have >1 authoritative server

Recursive server

- Receives queries from clients
 - CPE, user's PCs, mail servers, etc
- Send queries to authoritative servers
- Follow referrals down from the root servers until an answer is found
- Answer stored in local cache

Authoritative vs recursive

Server Function	Information	Target audience
Authoritative	Your domains	The Internet
Recursive	All other domains	Your users

Threats to DNS

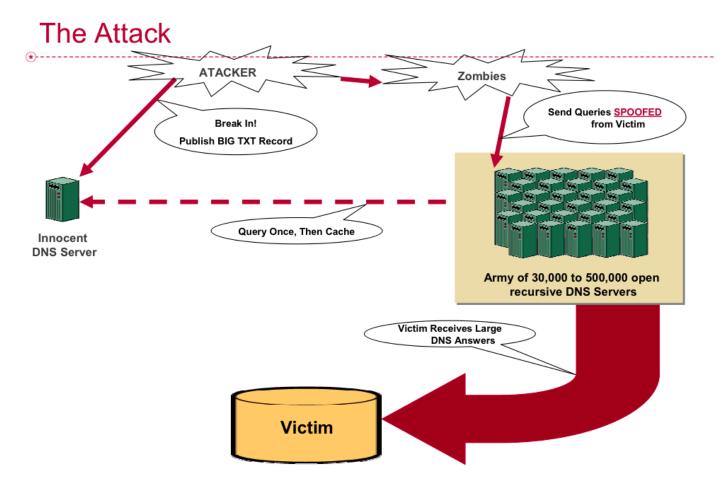
- Denial of service attacks
- Reflection/amplification attacks
- Cache poisoning
- Information disclosure
- Human error
- Hardware/software failure

DoS attacks

- Saturating the target with requests, such that it cannot respond to legitimate traffic
- When your DNS servers are the target of a denial of service attack:
 - Your customers can't resolve other domains
 - The world can't resolve your own domains
 - Might as well not be connected to the Internet

DoS attacks

- Your authoritative servers may be attacked
- Mitigate by having multiple servers
 - Well distributed globally
- Anycast a good technique to absorb DoS
- Many commercial anycast services
 - May act as secondary servers for your zones
- Some services available for ccTLDs, etc.



- Specific class of "reflection attack"
- DNS servers used as tools in the attack
- Queries with spoofed source addresses sent to DNS servers
- Server replies to the "source" with packet many times larger than the request
- The node legitimately using the spoofed address is the victim

Source: http://www.nanog.org/meetings/nanog37/presentations/frank-scalzo.pdf

- Victims see lots of UDP source 53 traffic
- Many different source addresses
- Standard DDoS mitigation technique
- Tempting to limit DNS packets by size
 - But this breaks DNSSEC!
- Often open recursive DNS servers
- Important to not be part of the problem!

- Don't run open recursive servers
 - Drop queries that are not from customers
 - Authoritative servers used in attacks too
- Ensure BCP 38 adherence
 - https://tools.ietf.org/html/bcp38

Cache poisoning

- Attacker fools recursive server into caching an incorrect answer
- www.mybank.com -> 192.0.2.1
 - 192.0.2.1 is under attacker control
 - Looks like your bank, but isn't!
- Successful cache poisoning attack affects many (if not all) users

Cache poisoning

www.mybank.com=192.0.2.1

Open Resolver

Query:

www.mybank.com?

Source: s.s.s.s:x Destination: d.d.d.d:y

ID: 123456

www.mybank.com?

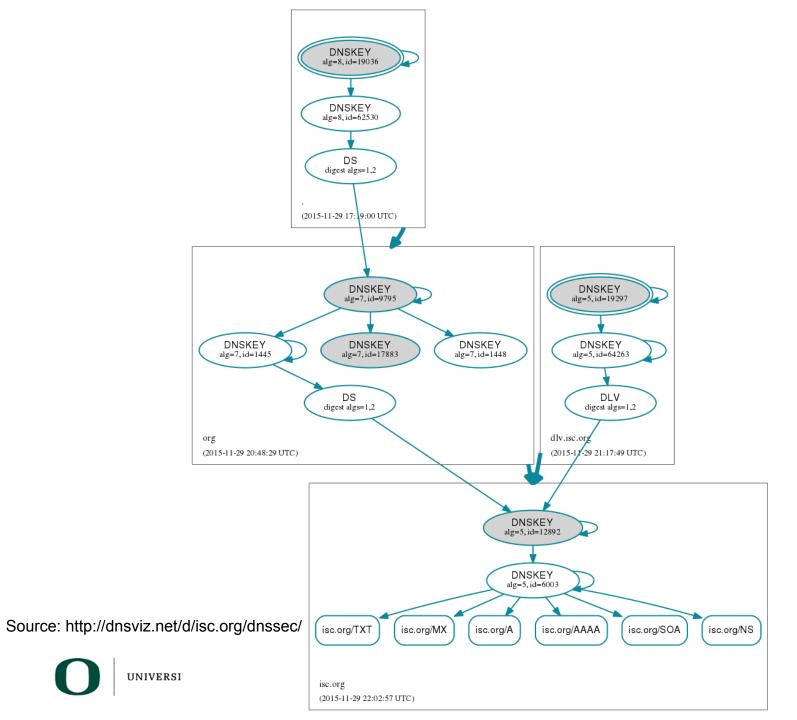
Attacker

Reply:

www.mybank.com=192.0.2.1

Source: d.d.d.d:y
Destination: s.s.s.s:x

ID: 123456



Cache poisoning

- Many tweaks to make poisoning harder
 - Being careful about processing responses
 - Transaction ID randomisation
 - Source port randomisation
 - NAT can undo this
- DNSSEC is the only true way to avoid it

Information disclosure

- DNS is clear text
 - DNSSEC provides authentication
 - Not confidentiality
- Zone transfers
 - Allow the entire contents of a zone to be read
 - Easier for an attacker to find targets

Separation of duties

- Authoritative and recursive separated
- Scale each service independently
- Failure of one does not affect the other
- Easier control
 - Restrict what each can be used for by whom
- Easier troubleshooting
 - Not confusing authoritative and cached data

Protecting authoritative servers

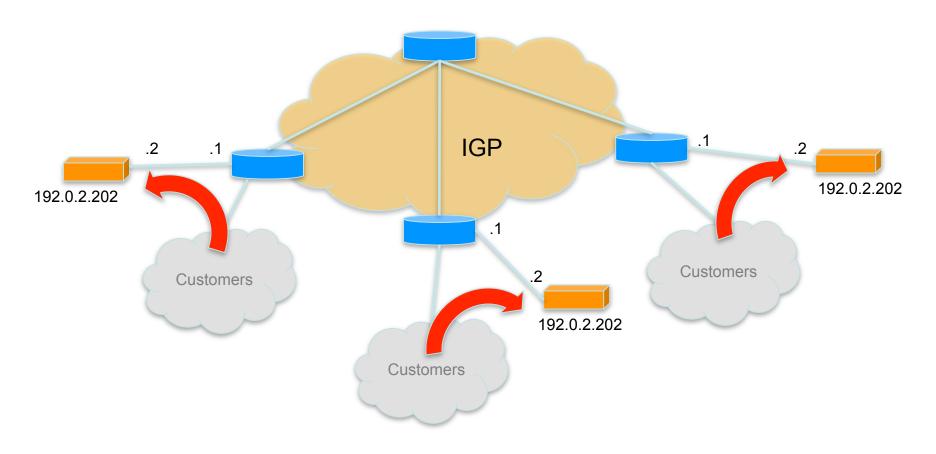
- Disable recursion!
- UDP/TCP dest port 53 from everywhere
- No other services on the same servers
- Run multiple authoritative servers
 - RFC 2182
 - Including some outside of your network
 - Trade secondary service with another operator
 - Commercial DNS hosting services

Protecting recursive servers

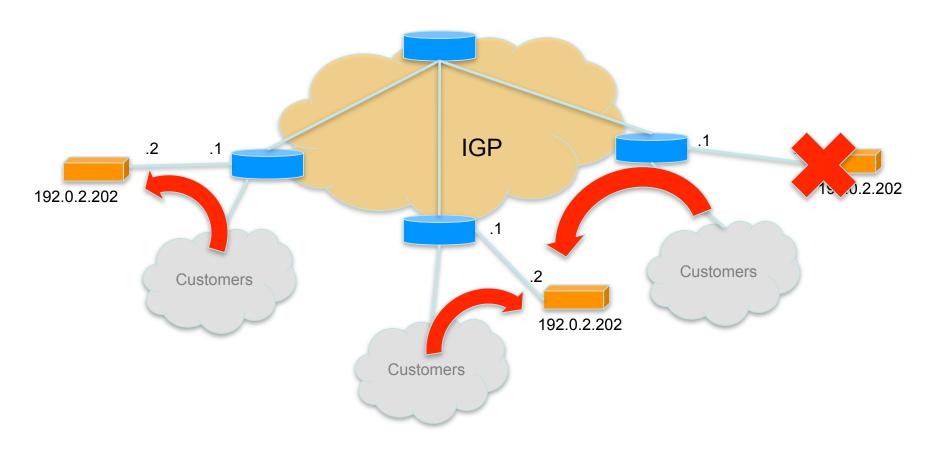
- Only permit queries from your customers
 - Otherwise you will be used for amplification
- Stateless packet filter
 - Permit UDP/TCP dest port 53 from customers
 - On-server firewall (iptables/ipfw)
 - ACL deployed to router/switch
 - Do not keep packet state!

Client failover

- Clients of authoritative servers
 - Recursive servers
 - Fail over well using different NS records
- Clients of recursive servers
 - Stub resolvers in CPE, PCs, servers, etc
 - Do a very poor job at failing over
 - Users complain immediately
 - Services break due to timeouts


Anycast

- Routing trick
- Same prefix announced from >1 location
- Client reaches "nearest" instance
 - based on network topology
 - BGP path selection
- Works well with short-lived sessions
 - like DNS!


Anycast topology

Anycast topology

Anycast DNS

- Load balancing
- Failover
- Distributed sinking of DDoS traffic
- Minimise impact of cache poisoning

Anycast DNS

- Run a routing daemon on DNS server
 - BIRD, Quagga, etc
 - Must withdraw prefix if DNS service stops
 - More complex server configuration
- IP SLA monitors DNS service
 - Advertises prefix if service is operational
 - No routing protocol on server
 - More complex router configuration

Diversification

- Different location
- Different network
- Different hardware
- Different OS
- Different DNS software
- Reduced chance of total service failure
- Increased configuration complexity

Configuration management

- Use a tool for configuration/zones revisions
 - Git, Subversion, etc
- Use a tool to generate zone files
 - Avoid error-prone manual edits
 - Netdot
- Use a tool to deploy configuration files
 - Ansible, Puppet, Chef, etc
- Use a tool...

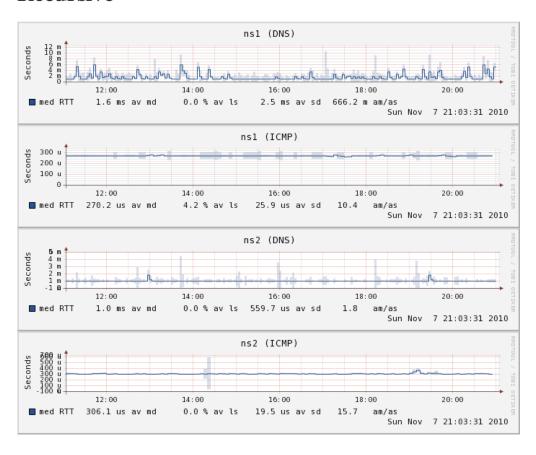
Sanity checking

- Periodically run checks for
 - Inconsistent, missing or bad data
 - Catching common misconfigurations
 - RFC 1912
- Check out dnscheck
 - https://github.com/dotse/dnscheck

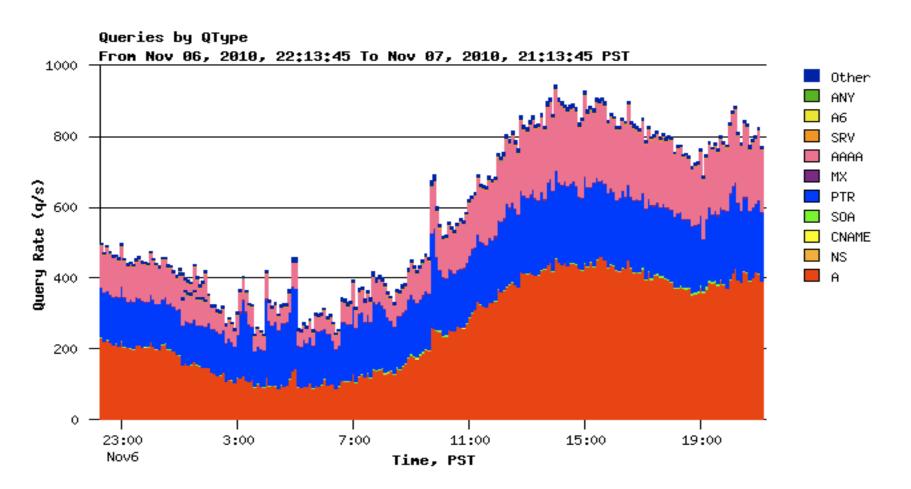
Monitoring availability

- Don't just ping the DNS server address!
- Check that server responds to queries
- Check that important records still exist
 - www, smtp, imap, etc
- DNS failure may impact alarming
 - Out-of-band alerting mechanism required

Monitoring delay


- Network delay
- DNS service response time
- Smokeping can do both

Monitoring delay


Recursive

Query statistics - dsc

Monitoring logs

- Use a tool to analyse DNS logs
 - Simple Log Watcher
 - tenshi
- Alarm on important messages
 - zone syntax errors
 - zone transfer errors
 - DNSSEC validation errors

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

