OPEN NETWORKING REVOLUTION

Aftab Siddiqui Internet Society Technical Engagement Manager - Asia Pacific <u>siddiqui@isoc.org</u>

Open Compute Project

OCP is a collaborative and community focused initiative on redesigning hardware technology to efficiently support the growing demands on compute infrastructure.

Projects:

- Storage
- Networking
- Server Design
- Open Rack
- Certification
- Hardware Management
- Data Center

Traditional Networking

Feature 1 Feature 2

Proprietary Network OS

Proprietary System

Proprietary Silicon

- Proprietary Features
- Few APIs Available
- Locked-in and complex support models
- Mostly proprietary ASICs

Open Networking

- Cumulus Linux
- PicOS
- IPInfusion
- SwitchLight OS
- MS Sonic
- FBOSS
- Etc....
- Dell ON
- HP Altoline
- EdgeCore
- Mellanox
- Etc.....
- Broadcom • Spectrum

Vendor	Model	ASIC	Ports	CPU	Memory
Dell	S4048	Trident II	48x10G SFP+ 6x40G QSFP+	Intel Atom C2338	2GB
Dell	S6000	Trident II	32x40G QSFP+	Intel Atom S1220	4GB
Dell	Z9100	Tomahawk	32 x Multirate		
Accton/ EdgeCore/HP	5712	Trident II	48x10G SFP+ 6x40G QSFP+	Intel Rangely C2538	8GB
Accton/ EdgeCore/HP	6712	Trident II	40G x 32	Intel Rangely C2538	8GB
Mellanox	SN2700	Spectrum	32 x Multirate	Spectrum	
Mellanox	SN2100	Spectrum	16 x Multirate	Spectrum	

What are my options?

Facebook 6-Pack....too complicated?

Facebook 6-Pack Modular Chassis

Network Operating System

- Hardware specification of switches are more or less similar but tough task is to pick the right Network Operating System
- Best way is to find major requirement and check the features (no brainer)
- If there is any virtual environment available for those NOS then deploy and test.
- CumulusLinux and IPinfusion both provide virtualized versions of their NOS and without any significant restrictions
- CumulusVX is the most user friendly VM available to-date. It supports all major environments
- All NOS are evolving quite rapidly, keep checking.

ipinfusion

Cumulus[®] Linux[®] Network OS

Linux cumulus 3.2.68-6 #3.2.68-6 SMP Mon Oct 26 15:45:09 PDT 2015 x86_64 Welcome to Cumulus VX (TM)

installed in the system and can be viewed in the /usr/share/*/doc/copyright files.

Linus Torvalds, owner of the mark on a world-wide basis.

Last login: Thu Jan 21 02:53:11 2016 from 22.0.12.59 cumulus@cumulus\$

All the Network Operating Systems are based on Linux and therefore offer the same kind of CLI... CumulusLinux, OcNOS, ONL, Dell OS10 etc.

First Impression

- Every NOS offer different port naming convention
- Some NOS offer utilities to simplify command line config such as auto complete

Target: Establish Connectivity between multiple PoPs.

Media: Dark Fibre

switches)

Project Timelines: Weeks rather months

POC: All services (layer 2 and transit) from 4 PoPs

- **Service Offering**: Backhaul (Layer 2) and Transit services.
- **Budget**: Challenging (we were forced to look into white box

Network Design [Dell S4048-ON switches, CumulusLinux], VXLAN overlay

Existing LAN Segment

Existing LAN Segment

Not that Simple

То	To view the legend, rerun "netshow" cmd with the "legend" option				
	Name	Speed	MTU	Mode	Summary
UP	br-200	N/A	1500	Bridge/L3	IP: 192.168.0.3/24 Tagged Members: swp 802.1q Tag: 200 STP: Disabled
UP	br-699	N/A	1500	Bridge/LZ	Untagged Members: vi Tagged Members: swp: 802.1q Tag: 699 STP: Disabled
UP	ethØ	1G	1500	Mamt	IP: 22.0.12.75/24
UP	10	N/A	16436	Mgmt	IP: 127.0.0.1/8, 2.1
UP	swp2	1G(SFP+)	1500	Trunk/L2	Bridge Membership: Tagged: br-200(200)
UP	swp48	1G(SFP+)	1500	Interface/L3	IP: 10.0.0.2/30
UP	vni-2000	N/A	1500	IntTypeUnknown	
UP	vni-600003	N/A	1500	Access/L2	Untagged: br-699

cumulus@C	ML-02\$ brctl showmacs	br-200		
port name	mac addr	vlan	is local?	ageing timer
swp2.200	00:23:9c:19:1c:40	0	no	7.55
swp2.200	14:18:77:01:5d:02	0	yes	0.00

cumulus@CML-02\$ bridge fdb show 00:23:9c:19:1c:40 dev swp2.200 vlan 0 master br-200 14:18:77:01:5d:02 dev swp2.200 vlan 0 master br-200 permanent 00:00:00:00:00:00 dev vni-2000 dst 1.1.1.1 vlan 65535 self permanent 00:00:00:00:00:00 dev vni-600003 dst 30.30.0.10 vlan 65535 self permanent f6:ad:12:bd:55:07 dev vni-600003 vlan 0 master br-699 permanent 14:18:77:01:5d:01 dev swp1.699 vlan 0 master br-699 permanent

2.200	<pre>cumulus@CML-02\$ sudo cat /proc/net/vlan/config sudo: unable to resolve host CML-02 [sudo] password for cumulus: VLAN Dev name VLAN ID Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD swp2.200 200 swp2 swp1.699 699 swp1</pre>
ni-600003 1.699	
2.2.2/32, ::1/128	Troubleshooting and configuration isn't very simple.

Solution: Ansible

Variables Required:

- hname = HostnameA
- swp = Number of Interfaces
- lip = Loopback IP
- bint = Bond interface name (e.g. bond0)
- bslaves = Member of bond interfaces (separate with , or space)
- bip = Bond IP
- localasn= Local ASN (Eg: 420000XXXX where XXXX is POP-ID)
- remotehname = HostnameB
- * nip = Neighbour IP for BGP (e.g. 30.10.0.2)
- * remoteasn = Remote ASN (eg: 420000XXXX where XXXX is POP-ID)
- * Populated Automatically on selection of Remote Host

Standard Configuration

- Create User Credentials
- Enable Routing (e.g. Quagga)
- NTP
- DNS
- MOTD
- SWP Interfaces

Basic Automation

POP-A: auto swp4 iface swp4 mtu 9216

auto vni-600030 iface vni-600030 vxlan-id 600030 vxlan-local-tunnelip 30.30.0.1 vxlan-remoteip 30.10.6.1

auto br-vl104 iface br-vl104 bridge-ports swp4.104 vn1-600030 bridge-stp on POP-B: auto swp4 iface swp4 mtu 9216

auto vni-600030 iface vni-600030 vxlan-id 600030 vxlan-local-tunnelip 30.10.6.1 vxlan-remoteip 30.30.0.1

auto br-vl104 iface br-vl104 bridge-ports swp4.104 vn1-600030 bridge-stp on

- Whitebox Switches are good even in enterprise and ISPs as well. You do need 10G/40G 25G/50G switches in your network.
- CumulusLinux worked well for "almost" everything we needed But review your requirement before selecting NOS.
- VXLAN can solve many problems to help de-clutter layer 2 network. MTU can be a killer though (50 extra Bytes to
- Operationally simple and economical deployment IF you have proper automation.

accommodate) and it breaks LACP and LLDP.

Thanks Any Questions

VXLAN Packet Captures

- Frame 13: 209 bytes on wire (1672 bits), 209 bytes captured (1672 bits) on interface 0
- Internet Protocol Version 4, Src: 1.1.1.1, Dst: 2.2.2.2
- User Datagram Protocol, Src Port: 37103 (37103), Dst Port: 4789 (4789)
- Virtual eXtensible Local Area Network
- Internet Protocol Version 4, Src: 192.168.0.1, Dst: 192.168.0.2
- Internet Control Message Protocol
- ▶ Frame 2: 568 bytes on wire (4544 bits), 568 bytes captured (4544 bits) on interface 0 Internet Protocol Version 4, Src: 30.0.0.1, Dst: 30.0.0.2 User Datagram Protocol, Src Port: 10123 (10123), Dst Port: 4789 (4789) Virtual eXtensible Local Area Network 802.10 Virtual LAN, PRI: 0, CFI: 0, ID: 100 Internet Protocol Version 4, Src: 60.0.0.2, Dst: 60.0.0.1 Internet Control Message Protocol

```
Ethernet II, Src: Dell_01:4b:30 (14:18:77:01:4b:30), Dst: Dell_01:5d:30 (14:18:77:01:5d:30)
```

```
Ethernet II, Src: CiscoInc_85:3f:79 (00:13:80:85:3f:79), Dst: CiscoInc_87:88:21 (00:1f:ca:87:88:21)
```

```
Ethernet II, Src: Dell_f7:67:09 (34:17:eb:f7:67:09), Dst: Dell_f8:0d:09 (34:17:eb:f8:0d:09)
Ethernet II, Src: CiscoInc_37:1d:a0 (00:13:19:37:1d:a0), Dst: CiscoInc_87:88:20 (00:1f:ca:87:88:20)
```