BGP Attributes and Policy Control

ISP/IXP Workshops
Agenda

• BGP Attributes
• BGP Path Selection
• Applying Policy
BGP Attributes

The “tools” available for the job
What Is an Attribute?

- Describes the characteristics of prefix
- Transitive or non-transitive
- Some are mandatory
• Sequence of ASes a route has traversed
• Loop detection
• Apply policy
AS-Path loop detection

AS 200
170.10.0.0/16

AS 100
180.10.0.0/16

AS 500

140.10.0.0/16
180.10.0.0/16
170.10.0.0/16
140.10.0.0/16

180.10.0.0/16 is not accepted by AS100 as the prefix has AS100 in its AS-PATH – this is loop detection in action
Next Hop

AS 200
150.10.0.0/16

AS 100
160.10.0.0/16

150.10.1.1
150.10.1.2

150.10.0.0/16
160.10.0.0/16

AS 300

eBGP – address of external neighbour
iBGP – NEXT_HOP from eBGP
Next hop is iBGP router loopback address

Recursive route look-up

120.1.1.0/24
Loopback 120.1.254.2/32

120.1.2.0/23

Loopback 120.1.254.3/32

120.1.1.0/24 120.1.2.0/23
120.1.254.2 120.1.254.3
Third Party Next Hop

- eBGP between Router A and Router C
- eBGP between Router A and Router B
- 120.68.1/24 prefix has next hop address of 150.1.1.3 – this is passed on to Router C instead of 150.1.1.2
- More efficient
- No extra config needed
Next Hop (summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent forwarding decision
Origin

• Conveys the origin of the prefix
• “Historical” attribute
• Influences best path selection
• Three values: IGP, EGP, incomplete

 IGP – generated by BGP network statement
 EGP – generated by EGP
 incomplete – redistributed from another routing protocol
Aggregator

• Useful for debugging purposes
• Conveys the IP address of the router/BGP speaker generating the aggregate route
• Does not influence path selection
Local Preference

AS 100
160.10.0.0/16

AS 200

AS 300

160.10.0.0/16 500
> 160.10.0.0/16 800

AS 400

500
800
Local Preference

- Local to an AS – non-transitive
 local preference set to 100 when heard from neighbouring AS
- Used to influence BGP path selection
determines best path for *outbound* traffic
- Path with highest local preference wins
Local Preference

• Configuration of Router B:

```plaintext
router bgp 400
neighbor 120.5.1.1 remote-as 300
neighbor 120.5.1.1 route-map local-pref in

route-map local-pref permit 10
  match ip address prefix-list MATCH
  set local-preference 800

ip prefix-list MATCH permit 160.10.0.0/16
```
Multi-Exit Discriminator (MED)

AS 200

120.68.1.0/24 2000

120.68.1.0/24 1000

AS 201

120.68.1.0/24
Multi-Exit Discriminator

- Inter-AS – non-transitive & optional attribute
- Used to convey the relative preference of entry points determines best path for *inbound* traffic
- Comparable if paths are from same AS
 - `bgp always-compared-med` allows comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)
• IGP metric can be conveyed as MED

 set metric-type internal in route-map

 enables BGP to advertise a MED which corresponds to the IGP metric values

 changes are monitored (and re-advertised if needed) every 600s

 bgp dynamic-med-interval <secs>
Multi-Exit Discriminator

• Configuration of Router B:

 router bgp 400
 neighbor 120.5.1.1 remote-as 200
 neighbor 120.5.1.1 route-map set-med out

 route-map set-med permit 10
 match ip address prefix-list MATCH
 set metric 1000

 ip prefix-list MATCH permit 120.68.1.0/24
Weight

- Not really an attribute – local to router
- Highest weight wins
- Applied to all routes from a neighbour

  ```
  neighbor 120.5.7.1 weight 100
  ```
- Weight assigned to routes based on filter

  ```
  neighbor 120.5.7.3 filter-list 3 weight 50
  ```
• Best path to AS4 from AS1 is always via B due to local-pref

• But packets arriving at A from AS4 over the direct C to A link will pass the RPF check as that path has a priority due to the weight being set

If weight was not set, best path back to AS4 would be via B, and the RPF check would fail
Community

• Communities are described in RFC1997
 Transitive & Optional attribute

• 32 bit integer
 Represented as two 16 bit integers (RFC1997/8)
 Common format is <local-ASN>:xx
 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved

• Used to group destinations
 Each destination could be member of multiple communities

• Very useful for applying policies within and between ASes
Well-Known Communities

- Several well known communities
 www.iana.org/assignments/bgp-well-known-communities

- no-export 65535:65281
 do not advertise to any eBGP peers

- no-advertise 65535:65282
 do not advertise to any BGP peer

- no-export-subconfed 65535:65283
 do not advertise outside local AS (only used with confederations)

- no-peer 65535:65284
 do not advertise to bi-lateral peers (RFC3765)
• AS100 announces aggregate and subprefixes
 aim is to improve loadsharing by leaking subprefixes
• Subprefixes marked with no-export community
• Router G in AS200 does not announce prefixes with no-export community set
No-Peer Community

- Sub-prefixes marked with no-peer community are not sent to bilateral peers

They are only sent to upstream providers
Router1>sh ip bgp
BGP table version is 28, local router ID is 100.1.15.224

Status codes: s suppressed, d damped, h history,
 * valid, > best,i - internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 100.1.0.0/20</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>*>i 100.1.16.0/20</td>
<td>100.1.31.224</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
<tr>
<td>*>i 100.1.32.0/19</td>
<td>100.1.63.224</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>i</td>
</tr>
</tbody>
</table>

...
BGP Path Selection Algorithm

Why is this the best path?
BGP Path Selection Algorithm

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path
BGP Path Selection Algorithm (continued)

• Lowest origin code
 IGP < EGP < incomplete

• Lowest Multi-Exit Discriminator (MED)
 If `bgp deterministic-med`, order the paths before comparing
 If `bgp always-compare-med`, then compare for all paths
 otherwise MED only considered if paths are from the same AS (default)
BGP Path Selection Algorithm (continued)

- Prefer eBGP path over iBGP path
- Path with lowest IGP metric to next-hop
- For eBGP paths:
 - If multipath is enabled, install N parallel paths in forwarding table
 - If router-id is the same, go to next step
 - If router-id is not the same, select the oldest path
• Lowest router-id (originator-id for reflected routes)
• Shortest cluster-list
 Client **must** be aware of Route Reflector attributes!
• Lowest neighbour address
Applying Policy with BGP

How to use the “tools”
Applying Policy with BGP

• Policy-based on AS path, community or the prefix
• Rejecting/accepting selected routes
• Set attributes to influence path selection

Tools:

Prefix-list (filters prefixes)
Filter-list (filters ASes)
Route-maps and communities
Policy Control – Prefix List

- Per neighbour prefix filter
 incremental configuration
- Inbound or Outbound
- Based upon network numbers (using familiar IPv4 address/mask format)
- Using access-lists for filtering prefixes was deprecated long ago

 Strongly discouraged!
Prefix-list Command

• Syntax:

[no] ip prefix-list <list-name> [seq <seq-value>] permit|deny
<network>/<len> [ge <ge-value>] [le <le-value>]

<network>/<len>: The prefix and its length

ge <ge-value>: "greater than or equal to"

le <le-value>: "less than or equal to"

Both "ge" and "le" are optional. Used to specify the range of the prefix length to be matched for prefixes that are more specific than <network>/<len>
Prefix Lists – Examples

• Deny default route

ip prefix-list EG deny 0.0.0.0/0

• Permit the prefix 35.0.0.0/8

ip prefix-list EG permit 35.0.0.0/8

• Deny the prefix 172.16.0.0/12

ip prefix-list EG deny 172.16.0.0/12

• In 192/8 allow up to /24

ip prefix-list EG permit 192.0.0.0/8 le 24

This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25, /26, /27, /28, /29, /30, /31 and /32.
Prefix Lists – Examples

• In 192/8 deny /25 and above

ip prefix-list EG deny 192.0.0.0/8 ge 25

 This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the
 address block 192.0.0.0/8.

 It has the same effect as the previous example

• In 193/8 permit prefixes between /12 and /20

ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20

 This denies all prefix sizes /8, /9, /10, /11, /21, /22, ... and higher in the
 address block 193.0.0.0/8.

• Permit all prefixes

ip prefix-list EG permit 0.0.0.0/0 le 32

 0.0.0.0 matches all possible addresses, “0 le 32” matches all
 possible prefix lengths
• Example Configuration

```
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 remote-as 110
  neighbor 102.10.1.1 prefix-list PEER-IN in
  neighbor 102.10.1.1 prefix-list PEER-OUT out
!
ip prefix-list PEER-IN deny 218.10.0.0/16
ip prefix-list PEER-IN permit 0.0.0.0/0 le 32
ip prefix-list PEER-OUT permit 105.7.0.0/16
ip prefix-list PEER-OUT deny 0.0.0.0/0 le 32
```
Policy Control – Filter List

• Filter routes based on AS path
• Inbound or Outbound

Example Configuration:

```
router bgp 100
  network 105.7.0.0 mask 255.255.0.0
  neighbor 102.10.1.1 filter-list 5 out
  neighbor 102.10.1.1 filter-list 6 in
!
ip as-path access-list 5 permit ^200$
ip as-path access-list 6 permit ^150$
```
Policy Control – Regular Expressions

• Like Unix regular expressions
 . Match one character
 * Match any number of preceding expression
 + Match at least one of preceding expression
 ^ Beginning of line
 $ End of line
 _ Beginning, end, white-space, brace
 | Or
 () brackets to contain expression
Policy Control – Regular Expressions

- Simple Examples

. match anything
.+ match at least one character
^$ match routes local to this AS
_1800$ originated by AS1800
^1800_ received from AS1800
1800 via AS1800
_790_1800_ via AS1800 and AS790
(1800_)+ multiple AS1800 in sequence
 (used to match AS-PATH prepends)
\(65530\) via AS65530 (confederations)
Policy Control – Regular Expressions

- Not so simple Examples

\^[0-9]+$
Match AS_PATH length of one

\^[0-9]+_[0-9]+$
Match AS_PATH length of two

\^[0-9]*_[0-9]*$
Match AS_PATH length of one or two

(will also match zero)

\^[0-9]+_[0-9]+_[0-9]+$
Match AS_PATH length of three

(701|1800)
Match anything which has gone through AS701 or AS1800

1849(.+_)12163$
Match anything of origin AS12163
and passed through AS1849
Policy Control – Route Maps

- A route-map is like a “programme” for IOS
- Has “line” numbers, like programmes
- Each line is a separate condition/action
- Concept is basically:

 if \textit{match} then do \textit{expression} and exit
 else
 if \textit{match} then do \textit{expression} and exit
 else etc
Route Maps – Caveats

- Lines can have multiple set statements but only one match statement.
- Line with only a set statement:
 - All prefixes are matched and set.
 - Any following lines are ignored.
- Line with a match/set statement and no following lines:
 - Only prefixes matching go through.
 - The rest are dropped.
• Example

omitting the third line below means that prefixes not matching list-one or list-two are dropped

route-map sample permit 10
 match ip address prefix-list list-one
 set local-preference 120
!
route-map sample permit 20
 match ip address prefix-list list-two
 set local-preference 80
!
route-map sample permit 30 ! Don’t forget this
Policy Control – Route Maps

• Example Configuration – route map and prefix-lists

 router bgp 100
 neighbor 1.1.1.1 route-map infilter in
!
 route-map infilter permit 10
 match ip address prefix-list HIGH-PREF
 set local-preference 120
!
 route-map infilter permit 20
 match ip address prefix-list LOW-PREF
 set local-preference 80
!
 ip prefix-list HIGH-PREF permit 10.0.0.0/8
 ip prefix-list LOW-PREF permit 20.0.0.0/8
Policy Control – Route Maps

• Example Configuration – route map and filter lists

```plaintext
router bgp 100
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map filter-on-as-path in
!
route-map filter-on-as-path permit 10
  match as-path 1
  set local-preference 80
!
route-map filter-on-as-path permit 20
  match as-path 2
  set local-preference 200
!
ip as-path access-list 1 permit _150$
ip as-path access-list 2 permit _210_
```
• Example configuration of AS-PATH prepend

```bash
router bgp 300
    network 105.7.0.0 mask 255.255.0.0
    neighbor 2.2.2.2 remote-as 100
    neighbor 2.2.2.2 route-map SETPATH out

route-map SETPATH permit 10
    set as-path prepend 300 300
```

• Use your **own** AS number when prepending

Otherwise BGP loop detection may cause disconnects
Policy Control – Route Maps

• Route Map MATCH Articles
 - as-path
 - clns address
 - clns next-hop
 - clns route-source
 - community
 - interface
 - ip address
 - ip next-hop
 - ip route-source
 - length
 - metric
 - nlri
 - route-type
 - tag
Policy Control – Route Maps

- **Route map SET Articles**
 - as-path
 - automatic-tag
 - clns
 - comm-list
 - community
 - dampening
 - default interface
 - interface
 - ip default next-hop
 - ip next-hop
Policy Control – Route Maps

• Route map SET Articles
 - ip precedence
 - ip qos-group
 - ip tos
 - level
 - local preference
 - metric
 - metric-type
 - next-hop
 - nlri multicast
 - nlri unicast
 - origin
 - tag
 - traffic-index
 - weight
Policy Control –
Matching Communities

• Example Configuration

 router bgp 100
 neighbor 102.10.1.2 remote-as 200
 neighbor 102.10.1.2 route-map filter-on-community in

 route-map filter-on-community permit 10
 match community 1
 set local-preference 50

 route-map filter-on-community permit 20
 match community 2 exact-match
 set local-preference 200

 ip community-list 1 permit 150:3 200:5
 ip community-list 2 permit 88:6
Policy Control – Setting Communities

• Example Configuration

```
router bgp 100
    network 105.7.0.0 mask 255.255.0.0
    neighbor 102.10.1.1 remote-as 200
    neighbor 102.10.1.1 send-community
    neighbor 102.10.1.1 route-map set-community out

route-map set-community permit 10
    match ip address prefix-list NO-ANNOUNCE
    set community no-export

route-map set-community permit 20
    match ip address prefix-list AGGREGATE

ip prefix-list NO-ANNOUNCE permit 105.7.0.0/16 ge 17
ip prefix-list AGGREGATE permit 105.7.0.0/16
```
Aggregation Policies

• Suppress Map
 Used to suppress selected more-specific prefixes (e.g. defined through a route-map) in the absence of the `summary-only` keyword.

• Unsuppress Map
 Used to unsuppress selected more-specific prefixes per BGP peering when the `summary-only` keyword is in use.
Aggregation Policies – Suppress Map

• Example

```
router bgp 100
    network 102.10.10.0
    network 102.10.11.0
    network 102.10.12.0
    network 102.10.33.0
    network 102.10.34.0
    aggregate-address 102.10.0.0 255.255.0.0 suppress-map block-net
neighbor 102.5.7.2 remote-as 200
!
route-map block-net permit 10
    match ip address prefix-list SUPPRESS
!
ip prefix-list SUPPRESS permit 102.10.8.0/21 le 32
ip prefix-list SUPPRESS deny 0.0.0.0/0 le 32
```
Aggregation Policies – Suppress Map

• **show ip bgp** on the local router

```
router1#sh ip bgp
BGP table version is 11, local router ID is 102.5.7.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network          Next Hop          Metric LocPrf Weight Path
*> 102.10.0.0/16  0.0.0.0          0      32768 i
s> 102.10.10.0    0.0.0.0          0      32768 i
s> 102.10.11.0    0.0.0.0          0      32768 i
s> 102.10.12.0    0.0.0.0          0      32768 i
*> 102.10.33.0    0.0.0.0          0      32768 i
*> 102.10.34.0    0.0.0.0          0      32768 i
```
Aggregation Policies – Suppress Map

- **show ip bgp** on the remote router

```
router2#sh ip bgp
BGP table version is 90, local router ID is 102.5.7.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt; 102.10.0.0/16</td>
<td>102.5.7.1</td>
<td></td>
<td>0</td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*&gt; 102.10.33.0</td>
<td>102.5.7.1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*&gt; 102.10.34.0</td>
<td>102.5.7.1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Aggregation Policies – Unsuppress Map

• Example

```
router bgp 100
  network 102.10.10.0
  network 102.10.11.0
  network 102.10.12.0
  network 102.10.33.0
  network 102.10.34.0
  aggregate-address 102.10.0.0 255.255.0.0 summary-only
  neighbor 102.5.7.2 remote-as 200
  neighbor 102.5.7.2 unsuppress-map leak-net
!
route-map leak-net permit 10
  match ip address prefix-list LEAK
!
ip prefix-list LEAK permit 102.10.8.0/21 le 32
ip prefix-list LEAK deny 0.0.0.0/0 le 32
```
Aggregation Policies – Unsuppress Map

• show ip bgp on the local router

router1#sh ip bgp

BGP table version is 11, local router ID is 102.5.7.1

Status codes: s suppressed, d damped, h history, * valid, > best,
i -internal

Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 102.10.0.0/16</td>
<td>0.0.0.0</td>
<td>32768</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s> 102.10.10.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s> 102.10.11.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s> 102.10.12.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s> 102.10.33.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s> 102.10.34.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
router2#sh ip bgp

BGP table version is 90, local router ID is 102.5.7.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 102.10.0.0/16</td>
<td>102.5.7.1</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*> 102.10.10.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*> 102.10.11.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>i</td>
</tr>
<tr>
<td>*> 102.10.12.0</td>
<td>102.5.7.1</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>i</td>
</tr>
</tbody>
</table>
Aggregation Policies – Aggregate Address

- **Summary-only used**
 - all subprefixes suppressed
 - unsuppress-map to selectively leak subprefixes
 - bgp per neighbour configuration

- **Absence of summary-only**
 - no subprefixes suppressed
 - suppress-map to selectively suppress subprefixes
 - bgp global configuration
BGP Attributes and Policy Control

ISP/IXP Workshops