Securing Internet Routing

Tashi Phuntsho (tashi@apnic.net)
Senior Network Analyst/Technical Trainer
Why should we bother?

- As a Manager
 - I don’t want to be front page news of a IT paper, or an actual newspaper for routing errors
Headlines

looking into BGP leak incident involving @google prefixes, AS37282 out of Niger and China Telecom.

BREAKING: Potential hijack underway. ThousandEyes detected intermittent availability issues to Google services from some locations. Traffic to certain Google destinations appears to be routed through an ISP in Russia & blackholed at a China Telecom gateway router.

https://blog.thousandeyes.com/internet-vulnerability-takes-down-google/
Headlines

Suspicious event hijacks Amazon traffic for 2 hours, steals cryptocurrency

Almost 1,300 addresses for Amazon Route 53 rerouted for two hours.

BGP hijack this morning affected Amazon DNS. eNet (AS10297) of Columbus, OH announced the following more-specifics of Amazon routes from 11:05 to 13:03 UTC today:

205.251.192.0/24
205.251.193.0/24
205.251.195.0/24
205.251.197.0/24
205.251.199.0/24

7:52 AM - 24 Apr 2018

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies
Headlines

Large BGP Leak by Google Disrupts Internet in Japan

Research // Aug 28, 2017 // Doug Madory

After leak (EU→EU)
YouTube blames Pakistan network for 2-hour outage

Company appears to confirm reports that Pakistan Telecom was responsible for routing traffic according to erroneous Internet Protocols.

BY GREG SANDOVAL I FEBRUARY 24, 2008 10:15 PM PST

Pakistan hijacks YouTube

Research // Feb 24, 2008 // Dyn Guest Blogs
Why do we keep seeing these?

• Because NO ONE is in charge?
 – No single authority model for the Internet
 • No reference point for what’s right in routing
Why do we keep seeing these?

• Routing works by RUMOUR
 – Tell what you know to your neighbors, and
 • Learn what your neighbors know
 – Assume everyone is correct (and honest)
 • Is the originating network the rightful owner?
Why do we keep seeing these?

• Routing is VARIABLE
 – The view of the network depends on where you are
 • Different routing outcomes at different locations
 – ~ no reference view to compare the local view 😞
Why do we keep seeing these?

• Routing works in REVERSE
 – Outbound advertisement affects inbound traffic
 – Inbound (Accepted) advertisement influence outbound traffic
Why do we keep seeing these?

• And as always, there is no E-bit
 – a bad routing update does not identify itself as BAD
 • RFC3514 – Steve Bellovin 😊

• So tools/techniques try to identify GOOD updates
Why should we worry?

• Because it’s just so easy to do bad in routing!

Why should we bother?

• As a Engineer
 – I don’t want to be told at 3AM my routing is broken
Current Practice

1. Peering/Transit Request
2. LOA Check
3. Filters (in/out)
Tools & Techniques

LOA Check

- Whois (manual)
- Letter of Authority
- IRR (RPSL)
• **Look up** **whois**
 – verify holder of a resource

```bash
tashi@tashi -> whois -h whois.apnic.net 202.125.96.0
% [whois.apnic.net]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html
% Information related to '202.125.96.0 - 202.125.96.255'
% Abuse contact for '202.125.96.0 - 202.125.96.255' is 'training@apnic.net'

```

```
inetnum: 202.125.96.0 - 202.125.96.255
netname: APNICTRAINING-AP
descr: Prefix for APNICTRAINING LAB DC
country: AU
admin-c: AT480-AP
technical-c: AT480-AP
status: ALLOCATED NON-PORTABLE
mnt-by: MAINT-AU-APNICTRAINING
mnt-irt: IRT-APNICTRAINING-AU
last-modified: 2016-06-17T00:17:28Z
source: APNIC

irt: IRT-APNICTRAINING-AU
address: 6 Cordelia Street
address: South Brisbane
address: QLD 4101
e-mail: training@apnic.net
abuse-mailbox: training@apnic.net
admin-c: AT480-AP
technical-c: AT480-AP
auth: # Filtered
mnt-by: MAINT-AU-APNICTRAINING
last-modified: 2013-10-31T11:01:10Z
source: APNIC

% Information related to '202.125.96.0/24AS131107'

```

```bash
role: APNIC Training
address: 6 Cordelia Street
address: South Brisbane
address: QLD 4101
country: AU
phone: +61 7 3858 3100
fax-no: +61 7 3858 3199
e-mail: training@apnic.net
admin-c: JW3997-AP
technical-c: JW3997-AP
nic-hdl: AT480-AP
mnt-by: MAINT-AU-APNICTRAINING
last-modified: 2017-08-22T04:59:14Z
source: APNIC

route: 202.125.96.0/24
descr: Prefix for APNICTRAINING LAB DC
origin: AS131107
mnt-by: MAINT-AU-APNICTRAINING
country: AU
last-modified: 2016-06-16T23:23:00Z
source: APNIC
```
Tools & Techniques

• Ask for a **Letter of Authority**
 – Absolve from any liabilities
• Look up/ask to enter details in IRR
 – describes route origination and inter-AS routing policies

```bash
 tashi@tashi -> whois -h whois.radb.net 61.45.248.0/24
aut-num: AS17660
as-name: BT-Bhutan
descr: Divinetworks for BT
admin-c: DUMMY-RIPE
tech-c: DUMMY-RIPE
status: OTHER
mnt-by: YP67G41-MNT
mnt-by: ES6436-RIPE
created: 2012-11-29T10:31:33Z
last-modified: 2018-09-04T15:26:24Z
source: RIPE-NONAUTH
rem: THIS OBJECT IS MODIFIED
rem: Please note that all data that is generally regarded as personal
rem: data has been removed from this object.
rem: To view the original object, please query the RIPE Database at:
rem: http://www.ripe.net/whois
rem: ***********************************************************
```

```plaintext
route:  61.45.248.0/24
descr:  Prefix for APNICTRAINING LAB - AS135533
origin: AS135533
mnt-by: MAINT-AU-APNICTRAININGLAB
country: AU
last-modified: 2017-10-19T01:36:37Z
source: APNIC
```
Tools & Techniques

• **IRR**
 - Helps generate network (prefix & as-path) filters using RPSL tools
 - Filter out route advertisements not described in the registry

```bash
no ip prefix-list PEER-v4IN permit 45.64.248.0/22
ip prefix-list PEER-v4IN permit 183.7.252.0/22
ip prefix-list PEER-v4IN permit 183.7.254.0/23
ip prefix-list PEER-v4IN permit 183.245.240.0/22
ip prefix-list PEER-v4IN permit 183.245.242.0/23
ip prefix-list PEER-v4IN permit 119.2.96.0/19
ip prefix-list PEER-v4IN permit 119.2.36.0/28
ip prefix-list PEER-v4IN permit 119.2.29.0/24
ip prefix-list PEER-v4IN permit 202.89.24.0/21
ip prefix-list PEER-v4IN permit 202.144.128.0/19
ip prefix-list PEER-v4IN permit 202.144.128.2/21
ip prefix-list PEER-v4IN permit 202.144.128.23/21
ip prefix-list PEER-v4IN permit 202.144.144.0/29
ip prefix-list PEER-v4IN permit 202.144.148.0/22

no ipv6 prefix-list PEER-v6IN
ipv6 prefix-list PEER-v6IN permit 2405::0000/32
ipv6 prefix-list PEER-v6IN permit 2405::0000:7000/36
```
Tools & Techniques

• Problem(s) with IRR
 – No single authority model
 • How do I know if a RR entry is genuine and correct?
 • How do I differentiate between a current and a lapsed entry?
 – Many RRs
 • If two RRs contain conflicting data, which one do I trust and use?
 – Incomplete data
 • If a route is not in a RR, is the route invalid or is the RR just missing data?
 – Scaling
 • How do I apply IRR filters to upstream(s)?
Back to basics – identify GOOD

• Using digital signatures to convey the “authority to use”?
 – A private key to sign the authority, and
 – the public key to validate that authority
How about trust?

• Follows the resource allocation/delegation hierarchy

\[
\text{IANA} \rightarrow \text{RIRs} \rightarrow \text{NIRs/LIRs} \rightarrow \text{End Holders}
\]

\[
\text{End Holders}
\]
Certificate chain mirrors the allocation hierarchy

Allocation Hierarchy

Trust Anchor Certificate

Chain of Trust - RPKI
Resource Certificates

• When an address holder A (*IRs) allocates resources \((IP \text{ address}/ASN)\) to B (end holders)

 – A issues a resource certificate that binds the allocated address with B’s public key,
 • All signed by A’s (CA) private key

 – proves the holder of the private key (B) is the legitimate holder of the resource!
Route Origin Authority

• B can now sign authorities using its private key, which can be validated by any third party against the TA.

• For routing, the address holder can authorize a network (ASN) to originate a route, and sign this permission with its private key (ROA).

<table>
<thead>
<tr>
<th>Prefix</th>
<th>202.144.128.0/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-length</td>
<td>/24</td>
</tr>
<tr>
<td>Origin ASN</td>
<td>AS17660</td>
</tr>
</tbody>
</table>
Filtering with ROAs – Route Origin Validation

Global (RPKI) Repo

ROA
2406:6400::/32-48
17821

RPKI Validator/ RPKI Cache server

RSYNC/RRDP

RPKI-to-Router (RtR)

AS17821

2406:6400::/48

ASXXXX

2406:6400::/32-48
17821
Are ROAs enough?

• What if I forge the origin AS in the AS path?
 – Would be accepted as “good” – pass origin validation!

• Which means, we need to secure the AS path as well
 – need AS path validation (per-prefix)
A BGPsec speaker validates the received update by checking:
- If there is a ROA that describes the prefix and origin AS, and
- If the received AS path can be validated as a chain of signatures (for each AS in the AS path) using the AS keys
AS-PATH validation issues...

• More resources
 – CPU - high crypto overhead to validate signatures, and
 – Memory
 • Updates in BGPsec would be per prefix
 • New attributes carrying signatures and certs/key-id for every AS in the AS path

• How do we distribute the certificates required?

• Can we have partial adoption?

• Given so much overhead, can it do more - Route leaks?
So, what can we do?

• Basic BGP OpSec hygiene – RFC7454/RFC8212

 – * RFC 8212 – BGP default reject or something similar

 – Filters with your customers and peers
 • Prefix filters, Prefix limit
 • AS-PATH filters, AS-PATH limit
 • Use IRR objects (source option) or ROA-to-IRR

 – Filter what you receive from your upstream(s)

 – * Create ROAs for your resources

 – * Filter inbound routes based on ROAs ~ ROV

• Join industry initiatives like MANRS
 • https://www.manrs.org/
Jay Borkenhagen
Mon Feb 11 14:53:45 UTC 2019

- Previous message (by thread): BGP topological vs center
- Next message (by thread): AT&T/as7018 now drops invalid prefixes from peers
- Messages sorted by: [date] [thread] [subject] [au]

Hello all,

In November 2018 during the ZAPP (South Africa Peering Forum) meeting in Cape Town, 3 major ISPs in Africa announced that they would enable RPKI’s ROV (Route Origin Validation) and the dropping of invalid routes as part of an effort to clean up the BGP internet, on the 1st April, 2019.

On the 1st of April, Vorkornline Communications (AS327171) enabled ROV and the dropping of invalid routes. This applies to all eBGP sessions for IPv4 and IPv6.

On the 5th of April, SEACOM (AS337100) enabled ROV and the dropping of invalid routes. This applies to all eBGP sessions with public peers, private peers for IPv4 and IPv6. eBGP sessions toward downstream customers will follow in 3 months from now.

We are still standing by for the 3rd ISP to complete their implementation, and we are certain they will communicate with the community accordingly.

Please note that for the legal reasons previously discussed on various fora, neither Workonline Communications nor SEACOM are utilising the ARIN TAL. A TAL only by a RGA issued under the ARIN TAL will fall back to a status of Not Found. Unfortunately, this means that ARIN members will not see any improved prefixes on our networks until this is resolved. We will each re-evaluate this decision if and when ARIN’s policy changes. We are hopeful that this will happen.

If you internetwork with either of us and may be experiencing any routing issues potentially related to this new policy, please feel free to reach out to:

- roc@workonline.org.za
- peering@seacom.com

Workonline Communications and SEACOM hope that this move encourages the rest of the ISP community around the world to ramp up their deployment of RPKI ROV and dropping of invalid routes, as we appreciate the work that AT&T have carried out in the same vein.

In the mean time, we are happy to answer any questions you may have about our deployments. Thanks.

Mark Tinka (SEACOM) & Ben Maddison (Workonline Communications).
Acknowledgement

• Geoff Huston, APNIC
• Randy Bush, IIJ Labs/Arrcus
THANK YOU