

MANRS (Mutually Agreed Norms for Routing Security)

Pacific Network Operators Group (PacNOG 29)

03, Dec 2021 | 1 pm Fiji Time (GMT+12)

Naveen Lakshman, MANRS Fellow naveen.k.ipv6(at)gmail.com Kunal Krishnil Raj, MANRS Fellow kunalkrishnilraj(at)gmail.com

1

Agenda

- Routing Security
 - Route Hijacks | Route Leaks | IP Spoofing
- Any Solution/s?
- MANRS for
 - Network Operators | IXP | Cloud and CDNs | Network Equipment Vendors
- MANRS Actions
 - Filtering | Anti Spoofing (uRPF/ACL) | Coordination | Global Validation (IRR/RPKI)
- MANRS ROA Tools
- MANRS Observatory (Partner View)
- MANRS Lab (Cisco IOS)
 - Filtering

- Access Control Lists (ACL)
- Unicast Reverse Path Forwarding (uRPF)

Acknowledgements

This tutorial is made of notes, configurations and diagrams from contributions by Aftab Siddiqui, Dr. Philip Smith, Tashi Phuntsho, Md. Zobair Khan, Anurag Bhatia and Musa Stephen Honlue.

The Problem

A Routing Security Overview

Routing Incident: (Vodafone~Idea AS55410 Hijack)

Vodafone Idea (AS55410) started originating 31,000+ routes which don't belong to them.

- Main Upstream leakers AS9498 (Bharti Airtel) and AS1273 (Vodafone UK)
- Spread mostly via IX connections
- Some of which re-propagated to their Peers (AS6939 HE)

Prefixes belonged to Google, Microsoft, Akamai, Fastly Cloudflare, and many others were affected.

909 https://www.manrs.org/2021/04/a-major-bgp-hijack-by-as55410-vodafone-idea-ltd/ https://twitter.com/Qrator_Radar/status/1383383956511354882/photo/1

https://twitter.com/DougMadory/status/1383138595112955

April 16, 2021 - AS55410 - VIL-AS-AP (Vodafone Idea) hijacked 37739 prefixes - countries affected 164 - ASNs affected 4012 - duration 1:30:00

Series of Prefix Hijacks

Possible BGP hijack

Beginning at 2021-10-13 08:57:32 UTC, we detected a possible BGP hijack. Prefix 45.128.160.0/22, is normally announced by AS47583 AS-HOSTINGER, CY.

But beginning at 2021-10-13 08:57:32, the same prefix (45.128.160.0/22) was also announced by ASN 212046.

This was detected by 4 BGPMon peers.

Expected

Start time: 2021-10-13 08:57:32 UTC

Expected prefix: 45.128.160.0/22

Expected ASN: 47583 (AS-HOSTINGER, CY)

Event Details

Detected advertisement: 45.128.160.0/22

Detected Origin ASN 212046 (MEZON-, LT)

Detected AS Path 51514 8455 13194 212046

Detected by number of BGPMon peers: 4

Detected by BGPStream

AS212046 - MEZON-LT - [LT] - Created Hijacks

Read FAQ

Propagation Info

2021-10-13 08:58 UTC

You have received this letter because our system has detected Created Hijacks *possibly* global incidents for AS212046

Max propagation: 79%

Incident Type	Created Hijacks	
Key ASN	AS212046 - MEZON-LT - [LT]	
		October 13, 2021 —
	Conflicts count all: 1548	AS212046 — MEZON —
Overall Info	ASNs affected: 251	hijacked 1029 prefixes,
	Countries affected: 16	creating 1548 conflicts for 1152 prefixes and 251 ASNs
	Prefixes created: 1029	in 16 countries. Maximum
Prefixes Info	Prefixes affected: 1152	propagation: 79%. Duration 1 hour.

Routing Incidents cause real world problems

Prefix/Route hijacking

Route hijacking, also known as "BGP hijacking," is when a network operator or attacker (accidentally or deliberately) impersonates another network operator. This routes traffic to the wrong network operator, when another real route is available.

Example: The 2008 YouTube hijack; an attempt to block YouTube through route hijacking led to much of the traffic to YouTube being dropped around the world.

Route leak

When a network operator who is multi-homing (2 upstream) accidentally announces routes learned from one upstream to the other upstream. Customer AS becomes an intermediary (Hairpin turn leak), usually unintentional

Ex: June 2019. Allegheny leaked routes from another provider to Verizon, causing significant outage.

https://blog.cloudflare.com/how-verizon-and-a-bgp-optimi zer- knocked-large-parts-of-the-internet-offline-today

Fix: Strong filtering policies (adjacent networks should strengthen their filtering policies to avoid accepting announcements that don't make sense).

Routing Incidents (Pacific) May ~ November 2021

Event Details (Hijacks)	Prefixes affected	Reason
Expected Origin: (AS 7018) ATT-INTERNET4, US Detected Origin: (AS 18229) CTRLS-AS-IN CtrlS Datacenters Ltd., IN	172.0.0.0/12	More specific route 172.10.13.0/24
Expected Origin: (AS 21928) T-MOBILE-AS21928, US Detected Origin: (AS 9498) BBIL-AP BHARTI Airtel Ltd., IN	172.32.0.0/11	More specific route 172.32.0.0/23

Event Details (Leaks)	Prefixes affected
Origin AS: AS 132792 University of the Philippines, PH Leaked AS: AS 7473 SINGTEL-AS-AP, Singapore Leaked To: AS 6461 (Zayo, US)	202.92.152.0/24
Origin AS: AS 17639 Converge-AS, PH Leaked AS: AS7473 SINGTEL-AS-AP, Singapore Leaked To: AS 6461 (Zayo, US)	136.158.10.0/24

Tools to Help

- Prefix and AS-Path filtering
- RPKI, IRR toolset, IRRPT, BGPQ3/4
- BGPSEC is standardized.

But...

Not enough deployment

We need a standard approach to improving routing security.

The Solution: Mutually Agreed Norms for Routing Security (MANRS)

MANRS improves the security and reliability of the global Internet routing system, based on collaboration among participants and shared responsibility for the Internet infrastructure.

MANRS sets a new norm for routing security.

MANRS Programmes

Internet eXchange Points (IXP)

Network Equipment Vendors

MANRS Actions for Network Operators

Action 1: Filtering Prevent propagation of incorrect routing information

Ensure the correctness of your own announcements and announcements from your customers to adjacent networks with prefix and AS-path granularity Action 2: Anti-spoofing Prevent traffic with spoofed source IP addresses

Enable source address validation for at least single-homed stub customer networks, their own end-users, and infrastructure Action 3: Coordination Facilitate global operational communication and coordination between network operators

Maintain globally accessible, up-to-date contact information in common routing databases Action 4: Global Validation Facilitate validation of routing information on a global scale

Publish your data so others can validate IRR/RPKI

Blue shading = Mandatory Action

MANRS Implementation Guide https://www.manrs.org/isps/bcop/

MANRS Actions for Internet Exchange Points (IXP)

Action 1 Prevent propagation of incorrect routing information

Implement filtering of route announcements at the Route Server based on routing information data (IRR and/or RPKI). Action 2 Promote MANRS to the IXP membership

Provide encouragement or assistance for IXP members to implement MANRS actions. Action 3 Protect the peering platform

Have a published

policy of traffic

not allowed on

the peering

fabric and

perform filtering

of such traffic.

operational communication and coordination Facilitate communication among members by providing

necessary mailing

lists and member

directories.

Action 4

Facilitate global

Action 5 Provide monitoring and debugging tools to the members.

Provide a looking glass for IXP members.

Blue shading = Mandatory Action

MANRS Implementation Guide https://www.manrs.org/ixps/

MANRS Actions for CDNs & Cloud Providers

Action 1 Prevent propagation of incorrect routing information

Ensure correctness of own announcements and of their peers (non-transit) by implementing explicit (whitelist) filtering with prefix granularity. Action 2 Prevent traffic with illegitimate source IP addresses

Implement anti-spoofing controls to prevent packets with illegitimate source IP address from leaving the network (egress filters). Action 3 Facilitate global operational communication and coordination

Maintain globally accessible, up-to-date contact information in PeeringDB and relevant RIR databases. Action 4 Facilitate validation of routing information on a global scale

Publicly document ASNs and prefixes that are intended to be advertised to external parties (IRR and/or RPKI) Action 5 Encourage MANRS adoption

Actively encourage MANRS adoption among the peers. Action 6 Provide monitoring and debugging tools to the peering partners

Provide a mechanism to inform peering partners if announcements did not meet the requirements of the peering policy.

MANRS Actions for Network Equipment Vendors

Action 1 Provide solutions for the implementation of specific MANRS Actions Action 2 Promote MANRS through training & technical content

Prevent propagation of Incorrect Anti-Spoofing, Protecting peering platform (Layer2)

Promote MANRS through training and technical content

MANRS Implementation Guide https://www.manrs.org/equipment-vendors/

Blue shading = Mandatory Action

MANRS for Network Operators

Action 1: Filtering Action 2: Anti-Spoofing Action 3: Coordination Action 4: Global Validation

Action 1: Filtering

- Threats to routing: Any network (running BGP) can announce/accept any IP prefix.
- Your first line of defence.
- You control what routes you are announcing
 - You have no control over what other networks announce
- To avoid issues, you have to decide what routes to accept from other networks.
- Operator defines a clear routing policy and implements filter that ensures correctness of own announcements and customers prefixes to adjacent networks.
- Operator applies due diligence when checking the correctness of its customer announcements, specifically that the customer legitimately holds the ASN and the address space it announces.

Reference Operator Networks

- AS64510 Transit Provider
- AS64500 MANRS Participant
- AS64511 Peer
- AS64501 Customer 1
- AS64502 Customer 2

Implementing Filters

- In order to prevent propagation of incorrect routing information, MANRS participants are required to implement prefix filtering.
- By implementing prefix filtering, you can permit or deny announcements of certain prefixes from neighboring ASes.

Filtering

- Outbound filtering (prefixes you advertise to Transit, Peers and Customers)
- Inbound filtering (prefixes you receive from Transit, Peers and Customers)

Prefix Filtering (Outbound)

Outbound Filtering

- The configuration should ensure that only appropriate prefixes are sent.
- Prefixes belonging to both your network and its downstream/customer

Filter:

- Prefixes that are not globally routable
- Routes that are too specific (should neither be announced nor accepted by a BGP speaker /24 for IPv4, /48 for IPv6)
- The default route (not willing to receive it)

Prefix filtering (Outbound)

To Customer (Downstream)

- Default route
- Whole Internet routing table except defaul⁻ and bogons (special use addresses, rfc1918 unassigned blocks)
- To Peers (other ISPs or Operators with whom you peer)
 - Send your prefixes + your downstream customers or
 - what you agreed to send

To Upstream/Transit Provider

- Your prefixes + your downstream customer
- prefixes

Prefix Filtering (Inbound)

Best Practices:

- Don't accept BOGON ASNs
- Don't accept BOGON prefixes
- Don't accept your own prefix
- Don't accept default (unless you requested it)
- Don't accept prefixes that are too specific
- Don't accept if AS Path is too long
- Create filters based on Internet Routing Registries (IRR)

Prefix filtering Inbound (Customers) ~(AS64501, AS64502)

- Customers speaking BGP, only accept prefixes registered to them, or prefixes registered to their customers
- If a provider has assigned address (PA) space to its customer, then the customer can announce back to his provider.
- If the Provider has NOT assigned address space to its customer, then:
 - Check in the five RIR databases to see if this address space really has been assigned to the customer

whois -h jwhois.apnic.net x.x.x.0/24

Prefix filtering Inbound (Customers)

Downstream/Customer has IPv4 192.0.2.0/24 and IPv6 2001:db8:1001::/48

Customer should only announce this to upstreams

```
router bgp 64500
address-family ipv4
 neighbor X.X.X.1 prefix-list AS64501-CUSTv4-IN in
address-family ipv6
 neighbor X:X:X:X::1 prefix-list AS64501-CUSTv6-IN in
ip prefix-list AS64501-CUSTv4-IN permit 192.0.2.0/24
ip prefix-list AS64501-CUSTv4-IN deny 0.0.0.0/0 le 32
ipv6 prefix-list AS64501-CUSTv6-IN permit 2001:db8:1001::/48
ipv6 prefix-list AS64501-CUSTv6-IN deny ::/0 le 128
```

Prefix filtering Inbound (Peers)

- Operators with whom you have agreed to exchange routes
- Only accept their prefixes and their downstream customers (or what was agreed)
- Verify they have the authority to route those prefixes (and their customers)
- Don't accept prefix length greater than /24 (IPv4) and /48 (IPv6)

Can use tools like bgpq3, bgpq4 <u>https://github.com/snar/bgpq3</u>

https://github.com/bgp/bgpq4

Configuration | Peer (Inbound)

If a peer has 2001:db8:3000::/36 and 198.51.0.0/22 prefixes

```
router bgp 64500
address-family ipv4
   neighbor X.X.X.1 prefix-list PEER-v4-IN in
address-family ipv6
   neighbor X:X:X:X::1 prefix-list PEER-v6-IN in
   exit
prefix list PEER-v4-IN permit 198.51.0.0/22 le 24
prefix list PEER-v4-IN deny 0.0.0.0/0 le 32
ipv6 prefix-list PEER-v6-IN permit 2001:db8:3000::/36 le 48
ipv6 prefix-list PEER-v6-IN deny ::/0 le 128
```

Prefix filters Inbound (Transit | Upstream)

If we want to receive just a Default Route

```
router bgp 64500
address-family ipv4
   neighbor X.X.X.1 prefix-list TRANSIT-DEFv4-IN in
address-family ipv6
   neighbor X:X:X::1 prefix-list TRANSIT-DEFv6-IN in
   exit
!
ip prefix-list TRANSIT-DEFv4-IN permit 0.0.0.0/0
!
ipv6 prefix-list TRANSIT-DEFv6-IN permit ::/0
```

From Upstream | Transit Provider

Full Internet prefixes/routes

- Don't accept your prefixes
- Don't accept bogon prefixes.
 - rfc1918, rfc6890 and unassigned address blocks
- Don't accept prefixes with length greater than /24 (IPv4) and /48 (IPv6)
- Don't accept default

From Upstream | Transit (Configuration)

```
router bgp 64500
address-family ipv4
   neighbor X.X.X.1 prefix-list TRANSIT-FULL-v4 in
address-family ipv6
   neighbor X:X:X::1 prefix-list TRANSIT-FULL-v6 in
ip prefix-list TRANSIT-FULL-v4 deny 203.0.113.0/24 le 32
ip prefix-list TRANSIT-FULL-v4 deny 192.0.2.0/24 le 32
ip prefix-list TRANSIT-FULL-v4 deny 198.51.100.0/24 le 32
ip prefix-list TRANSIT-FULL-v4 permit 0.0.0.0/0 le 24
ipv6 prefix-list TRANSIT-FULL-v6 deny 2001:db8:1000::/36 le 128
ipv6 prefix-list TRANSIT-FULL-v6 deny 2001:db8:1001::/48 le 128
ipv6 prefix-list TRANSIT-FULL-v6 deny 2001:db8:2002::/48 le 128
ipv6 prefix-list TRANSIT-FULL-v6 permit ::/0 le 48
```

Prefix Filters - Inbound from Transit Provider (IPv4)

```
router bgp 64500
address-family ipv4
    neighbor X.X.X.1 prefix-list TRANSITv4-IN in
```

```
ip prefix-list TRANSITv4-IN deny 0.0.0.0/0
ip prefix-list TRANSITv4-IN deny 0.0.0.0/8 le 32
ip prefix-list TRANSITv4-IN deny 10.0.0.0/8 le 32
ip prefix-list TRANSITv4-IN deny 100.64.0.0/10 le 32
ip prefix-list TRANSITv4-IN deny <your prefix>/X le 32
ip prefix-list TRANSITv4-IN deny 127.0.0.0/8 le 32
ip prefix-list TRANSITv4-IN deny 169.254.0.0/16 le 32
ip prefix-list TRANSITv4-IN deny 172.16.0.0/12 le 32
ip prefix-list TRANSITv4-IN deny 192.0.0.0/24 le 32
ip prefix-list TRANSITv4-IN deny 192.0.2.0/24 le 32
ip prefix-list TRANSITv4-IN deny 192.168.0.0/16 le 32
ip prefix-list TRANSITv4-IN deny 198.18.0.0/15 le 32
ip prefix-list TRANSITv4-IN deny 198.51.100.0/24 le 32
ip prefix-list TRANSITv4-IN deny 203.0.113.0/24 le 32
ip prefix-list TRANSITv4-IN deny 224.0.0.0/4 le 32
ip prefix-list TRANSITv4-IN deny 240.0.0.0/4 le 32
ip prefix-list TRANSITv4-IN deny 0.0.0.0/0 ge 25
ip prefix-list TRANSITv4-IN permit 0.0.0.0/0 le 32 (/24)
```

- ! Default ! Network Zero ! RFC1918 ! RFC6598 shared address ! Your address space ! Loopback I APTPA ! RFC1918 ! IETF Protocol ! TEST1 ! RFC1918 ! Benchmarking ! TEST2 ! TEST3 ! Multicast ! Future Use
- ! Prefixes longer than /24 32

Prefix Filters - Inbound from Transit Provider (IPv6)

```
router bgp 64500
address-family ipv6
   neighbor X:X:X:X::1 prefix-list TRANSITv6-IN in
!
ipv6 prefix-list TRANSITv6-IN deny 2001::/32 le 128
ipv6 prefix-list TRANSITv6-IN deny 2001:db8::/32 le 128
ipv6 prefix-list TRANSITv6-IN deny 2002::/16 le 128
ipv6 prefix-list TRANSITv6-IN deny <your::/32> le 128
ipv6 prefix-list TRANSITv6-IN deny 3ffe::/16 le 128
ipv6 prefix-list TRANSITv6-IN deny fc00::/7 le 128
ipv6 prefix-list TRANSITv6-IN deny fe00::/9 le 128
ipv6 prefix-list TRANSITv6-IN deny fe80::/10 le 128
ipv6 prefix-list TRANSITv6-IN deny fec0::/10 le 128
ipv6 prefix-list TRANSITv6-IN deny ff00::/8 le 128
ipv6 prefix-list TRANSITv6-IN permit 2000::/3 le 48
ipv6 prefix-list TRANSITv6-IN deny ::/0 le 128
```

- ! Teredo subnets (rfc4380)
- ! Documentation (rfc3849)
- ! 6to4 subnets (rfc3056)
- ! Your prefix
- ! Old 6bone
- ! ULA (rfc4193, rfc8190)
- ! Reserved IETF
- ! Link-local (rfc4291)
- ! Reserved IETF
- ! Multicast
- ! Global Unicast

AS Path filtering

We can limit the AS PATH in announced prefixes using BGP AS path filter. The regular expression ^\$ in ACL statement matches empty AS_PATH thus it allows only locally announced prefixes being sent to ISP.

```
Customer1 (AS64501)
```

```
ip as-path access-list 10 permit ^$
!
router bgp 64501
neighbor x.x.x.x filter-list 10 out
```

Provider (MANRS Participant)

```
ip as-path access-list 10 permit ^64501$
!
router bgp 64500
neighbor x.x.x.x filter-list 10 in
```

Max Prefix Filtering (BCP 194)

It is recommended to configure a limit on the number of routes to be accepted from a peer. The following rules are generally RECOMMENDED:

- From peers, have a limit lower than the number of routes in the Internet. This will shut down the BGP peering if the peer suddenly advertises the full table.
- From upstreams that provide full routing, it is RECOMMENDED to have a limit higher than the number of routes in the Internet. A limit is still useful in order to protect the network (and in particular, the routers' memory) if too many routes are sent by the upstream.

Maximum Prefix Limit

```
router bgp ASN
address family ip [v4|v6]
neighbor <peer addr|group > maximum prefix <max value> [threshold][restart N]
[warning only]
```

- Drop the peering if more than 3000 prefixes received address-family ipv4 neighbor X.X.X.1 maximum prefix 3000

 address-family ipv6 neighbor X:X:X:X:1 maximum-prefix 3000
- Log a warning when it receives more than 3000 prefixes
 neighbor X.X.X.1 maximum prefix 3000 warning only

Prefix lists - Tools

Tools are there to help you

- bgpq3/bgpq4
- Level3 Filtergen

bgpq3: Cisco, Juniper, Bird

by default bgpq3 generates configuration based on RADB data

```
bgpq4: Nokia/SR, Arista, Mikrotik, Huawei
```

by default bgpq4 generates configuration based on NTT's IRR

(naveen LAPTOP-6VN0I0AD)-[~] \$ bgpq4 -S APNIC -1 AS10075-v4-in AS10075 ip prefix-list AS10075-v4-in ip prefix-list AS10075-v4-in permit 103.7.248.0/22 ip prefix-list AS10075-v4-in permit 103.7.250.0/24 ip prefix-list AS10075-v4-in permit 103.7.251.0/24 ip prefix-list AS10075-v4-in permit 103.131.156.0/22 ip prefix-list AS10075-v4-in permit 103.131.156.0/24 ip prefix-list AS10075-v4-in permit 103.131.157.0/24 ip prefix-list AS10075-v4-in permit 103.131.158.0/24 prefix-list AS10075-v4-in permit 103.131.159.0/24 ip prefix-list AS10075-v4-in permit 103.229.82.0/23 ip prefix-list AS10075-v4-in permit 163.47.156.0/22 prefix-list AS10075-v4-in permit 163.47.156.0/23 ip prefix-list AS10075-v4-in permit 163.47.156.0/24 ip prefix-list AS10075-v4-in permit 163.47.157.0/24 ip prefix-list AS10075-v4-in permit 163.47.158.0/24 ip prefix-list AS10075-v4-in permit 163.47.159.0/24

RIR maintained databases (AFRINIC, ARIN, APNIC, LACNIC and RIPE) shall be trusted more than the others because they have latest update about which address space allocated to ASes. Encouraged to use '-S' flag to limit database sources to only ones they trust

Tools (BGPQ4) ~ (Juniper, Huawei, Nokia)

— (naveen図 LAPTOP-6VNOIOAD)-[~]
-\$ bgpq4 -1 AS10074-v4-in AS10075 -J -S APNIC
oolicy-options {
eplace:
prefix-list AS10074-v4-in {
103.7.248.0/22;
103.7.250.0/24;
103.7.251.0/24;
103.131.156.0/22;
103.131.156.0/24;
103.131.157.0/24;
103.131.158.0/24;
103.131.159.0/24;
103.229.82.0/23;
163.47.156.0/22;
163.47.156.0/23;
163.47.156.0/24;
163.47.157.0/24;
163.47.158.0/24;
163.47.159.0/24;

-(naveen2 LAPTOP-6VNOIOAD)-[~] - bgpq4 -1 AS10074-v4-in AS10075 -U -S APNIC undo ip ip-prefix AS10074-v4-in ip ip-prefix AS10074-v4-in permit 103.7.248.0 22 ip ip-prefix AS10074-v4-in permit 103.7.250.0 24 ip ip-prefix AS10074-v4-in permit 103.7.251.0 24 ip ip-prefix AS10074-v4-in permit 103.131.156.0 22 ip ip-prefix AS10074-v4-in permit 103.131.156.0 24 ip ip-prefix AS10074-v4-in permit 103.131.157.0 24 ip ip-prefix AS10074-v4-in permit 103.131.158.0 24 ip ip-prefix AS10074-v4-in permit 103.131.159.0 24 ip ip-prefix AS10074-v4-in permit 103.229.82.0 23 ip ip-prefix AS10074-v4-in permit 163.47.156.0 22 ip ip-prefix AS10074-v4-in permit 163.47.156.0 23 ip ip-prefix AS10074-v4-in permit 163.47.156.0 24 ip ip-prefix AS10074-v4-in permit 163.47.157.0 24 ip ip-prefix AS10074-v4-in permit 163.47.158.0 24 ip ip-prefix AS10074-v4-in permit 163.47.159.0 24

(naveen[□] LAPTOP-6VNOIOAD)-[~] -\$ bgpq4 -1 AS10074-v4-in AS10075 -N -S APNIC configure router policy-options begin no prefix-list "AS10074-v4-in" prefix-list "AS10074-v4-in" prefix 103.7.248.0/22 exact prefix 103.7.250.0/24 exact prefix 103.7.251.0/24 exact prefix 103.131.156.0/22 exact prefix 103.131.156.0/24 exact prefix 103.131.157.0/24 exact prefix 103.131.158.0/24 exact prefix 103.131.159.0/24 exact prefix 103.229.82.0/23 exact prefix 163.47.156.0/22 exact prefix 163.47.156.0/23 exact prefix 163.47.156.0/24 exact prefix 163.47.157.0/24 exact prefix 163.47.158.0/24 exact prefix 163.47.159.0/24 exact exit

commit

BGPQ4 (Mikrotik, Arista, Bird)

(naveen LAPTOP-6VNOIOAD)-[~] -\$ bgpq4 -1 AS10074-v4-in AS10075 -e -S APNIC (naveen[®] LAPTOP-6VNOIOAD)-[~] no ip prefix-list AS10074-v4-in - bgpq4 -1 AS10074-v4-in AS10075 -K -S APNIC ip prefix-list AS10074-v4-in /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.7.248.0/22 seq 1 permit 103.7.248.0/22 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.7.250.0/24 seq 2 permit 103.7.250.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.7.251.0/24 seq 3 permit 103.7.251.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.131.156.0/22 seq 4 permit 103.131.156.0/22 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.131.156.0/24 seq 5 permit 103.131.156.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.131.157.0/24 seq 6 permit 103.131.157.0/24 routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.131.158.0/24/ seq 7 permit 103.131.158.0/24 routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.131.159.0/24 seq 8 permit 103.131.159.0/24 routing filter add action=accept chain="AS10074-v4-in-V4" prefix=103.229.82.0/23 seq 9 permit 103.229.82.0/23 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.156.0/22 seq 10 permit 163.47.156.0/22 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.156.0/23 seg 11 permit 163.47.156.0/23 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.156.0/24 seq 12 permit 163.47.156.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.157.0/24 seq 13 permit 163.47.157.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.158.0/24 seq 14 permit 163.47.158.0/24 /routing filter add action=accept chain="AS10074-v4-in-V4" prefix=163.47.159.0/24 seq 15 permit 163.47.159.0/24

BGPQ3 (IPv6 Filters) ~ (Bird, Cisco, Juniper)

Bird

BGPQ4 (AS Path access-list using AS-SET)

(naveen LAPTOP-6VN0IOAD)-[~] -\$ bgpq4 -f 10075 -1 AS10075-in AS-FGL no ip as-path access-list AS10075-in ip as-path access-list AS10075-in permit ^10075(_10075)*\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (7565|7690|9230|9288)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)* (9441|9451|9651|9723)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(9825|9832|13335|17469)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (17471|17641|17806|17819)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (18022|18109|18230|18715)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (23688|23893|23923|23956)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (23991|24050|24122|24342)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)*_(24389|24432|24481|24556)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(37972|38011|38017|38023)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38026|38030|38031|38036)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38054|38067|38069|38071)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(38137|38138|38192|38200)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38203|38210|38212|38256)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38267|38313|38315|38493)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38555|38556|38558|38562)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38588|38592|38614|38712)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (38721|38744|45176|45245)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (45273|45276|45326|45766)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (45904|45905|45925|45951)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (55344|55406|55473|55492)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(55531|55550|55708|55733)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (55828|56054|56115|56121)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(56138|56264|58445|58508)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(58527|58581|58587|58599)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (58615|58616|58623|58629)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (58655|58656|58657|58662)\$ ip as-path access-list AS10075-in permit ^10075(_[0-9]+)*_(58665|58668|58673|58682)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (58684|58688|58689|58691)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (58695|58701|58704|58705)\$ ip as-path access-list AS10075-in permit ^10075([0-9]+)* (58715|58736|58737|58749)\$

BGPQ4 - Extended Access List ~ (Cisco, Juniper)

(naveen LAPTOP-6VNOIOAD)-[~] -\$ bgpq4 -E AS10075 -S APNIC -1 AS10075-v4-in no ip access-list extended AS10075-v4-in ip access-list extended AS10075-v4-in permit ip host 103.7.248.0 host 255.255.252.0 permit ip host 103.7.250.0 host 255.255.255.0 permit ip host 103.7.251.0 host 255.255.255.0 permit ip host 103.131.156.0 host 255.255.252.0 permit ip host 103.131.156.0 host 255.255.255.0 permit ip host 103.131.157.0 host 255.255.255.0 permit ip host 103.131.158.0 host 255.255.255.0 permit ip host 103.131.159.0 host 255.255.255.0 permit ip host 103.229.82.0 host 255.255.254.0 permit ip host 163.47.156.0 host 255.255.252.0 permit ip host 163.47.156.0 host 255.255.254.0 permit ip host 163.47.156.0 host 255.255.255.0 permit ip host 163.47.157.0 host 255.255.255.0 permit ip host 163.47.158.0 host 255.255.255.0 permit ip host 163.47.159.0 host 255.255.255.0

naveen@LAPTOP-6VNOIOAD:~\$
naveen@LAPTOP-6VNOIOAD:~\$ bgpq3 -E AS10075 -S APNIC -l AS10075-v4-in -J
policy-options {
<pre>policy-statement AS10075-v4-in {</pre>
replace:
from {
route-filter 103.7.248.0/22 exact;
route-filter 103.7.250.0/24 exact;
route-filter 103.7.251.0/24 exact;
route-filter 103.131.156.0/22 exact;
route-filter 103.131.156.0/24 exact;
route-filter 103.131.157.0/24 exact;
route-filter 103.131.158.0/24 exact;
route-filter 103.131.159.0/24 exact;
route-filter 103.229.82.0/23 exact;
route-filter 163.47.156.0/22 exact;
route-filter 163.47.156.0/23 exact;
route-filter 163.47.158.0/24 exact;
route-filter 163.47.159.0/24 exact;

ASN Bogons

AS Number/Range	Status	RFC Reference
0	Reserved	RFC7607
23456	Transition_AS	RFC6793
64496 - 64511	Reserved for use in docs and code	RFC5398
64512 - 65534	Reserved for Private Use	RFC6996
65535	Reserved	RFC7300
65536 - 65551	Reserved for use in docs and code	RFC5398
65552 - 131071	Reserved	By IANA
420000000 - 4294967294	Reserved for Private Use	RFC6996
4294967295	Reserved	RFC7300

Filtering AS Bogons using AS-Path Access Lists

ip as-path access-list 99 permit _0_

- ip as-path access-list 99 permit _23456_
- ip as-path access-list 99 permit _(6449[6-9])_|_(6450[0-9])_|_(6451[0-1])_|_(6553[6-9])_|_(6554[0-9])_|_(6555[0-1])_
- ip as-path access-list 99 permit _6(4(5(1[2-9][2-9][0-9])[6-9][0-9])[5([0-4][0-9][0-9][5([0-2][0-9]]3[0-5])))_
- ip as-path access-list 99 permit _6555[2-9] | _655[6-9][0-9] | _65[6-9][0-9][0-9] | _6[6-9][0-9][0-9][0-9]
- ip as-path access-list 99 permit _[7-9][0-9][0-9][0-9][0-9]_|_1[0-2][0-9][0-9][0-9][0-9]_|_130[0-9][0-9][0-9]_
- ip as-path access-list 99 permit _1310[0-6][0-9]_|_13107[0-1]_

- ip as-path access-list 99 permit _(42949[0-5][0-9][0-9][0-9][0-9])_|_(429496[0-6][0-9][0-9][0-9])_
- ip as-path access-list 99 permit _(4294967[0-1][0-9][0-9])_|_(42949672[0-8][0-9])_|_(429496729[0-4])_

```
!
```

```
route-map PEER-IN deny 1
```

```
match as-path 99
```

Action 2: Anti-Spoofing (BCP 38 – RFC2827 and more) Network Ingress Filtering

Source Address Validation (SAV)

Source Address Validation (SAV) is the best current practice (BCP 38/RFC 2827) aimed at filtering packets based on source IP addresses at the network edges.

Check the source IP address of IP packets

- filter invalid source address
- filter close to the packets origin as possible
- filter precisely as possible

If no networks allow IP spoofing, we can eliminate these kinds of Spoofing/DoS attacks

Source Address Validation (SAV)

ACL (Access Control Lists)

• Create an access-list that lists all customer IP blocks and use ingress filtering to filter packets that are sourced from spoofed IP address

uRPF (Unicast Reverse Path Forwarding)

- uRPF is a technique where the router can discard packets with invalid or fake or incorrect source addresses by a simple check against the Forwarding table (FIB).
- Designed to help mitigate attacks based on source address spoofing.
- Interface configured for uRPF drops packets if they are from spoofed IP source address
- Check incoming packets using 'routing table' against FIB/CEF table
- Uses less CPU and RAM, compared to implementing access-lists

Unicast Reverse Path Forwarding (uRPF)

BCP38: Network ingress filtering https://tools.ietf.org/html/bcp38

BCP84: Ingress filtering for multi-homed networks https://tools.ietf.org/html/bcp84

uRPF: Strict Mode

Router compares source address of incoming packet with FIB entry

- If FIB entry interface matches incoming interface, the packet is forwarded
- If FIB entry interface does not match incoming interface, the packet is dropped

uRPF: Strict Mode

Configuration in operator's router

Implement uRPF on all single-homed customer facing interfaces

Verification (uRPF)

(as64500#show ip interface GigabitEthernet 0/0 begin uRPF
	Input features: uRPF, MCI Check
	IPv4 WCCP Redirect outbound is disabled
	IPv4 WCCP Redirect inbound is disabled
	IPv4 WCCP Redirect exclude is disabled
	IP verify source reachable-via RX
	5166 verification drops
	0 suppressed verification drops
	12 verification drop-rate
	0 suppressed verification drops 12 verification drop-rate

uRPF: Loose Mode

- Source address must be in the FIB
- Typically used to drop non-routed address space
- Can be used when asymmetric traffic flows are present (for multihoming)

Cisco

```
interface gig 0/0
ip verify unicast source reachable-via any
ipv6 verify unicast source reachable-via any
```

ACL - SAV example (Cisco)

ACLs can also be used on devices where automatic filtering features are not available you can use ACLs to manually implement equivalent filtering.

- Towards a provider's servers
- Towards infrastructure networks
- Deployed on the PE/CE boundary

Configuration in operator's router

```
ip access-list extended fromCUSTOMER1
  permit ip 192.168.0.0 0.0.255.255 any
  permit ip 10.0.0.0 0.0.0.3 any
  deny ip any any
```

interface Gigabitethernet0/0
ip access-group fromCUSTOMER1 in

ACL example (Juniper)

Configuration in operator's router

```
firewall family inet {
 filter fromCUSTOMER {
  term CUSTOMER {
   from source-address {
    192.168.0.0/16;
    10.0.0/30;
   then accept;
  term Default {
   then discard;
[edit interface ge-0/0/0 unit 0 family
inet]
filter {
 input fromCUSTOMER;
```


Action 3: Coordination

Facilitating global operational communication and coordination between network operators

Coordination

MANRS participants should perform the following action in order to facilitate global communication between network operators.

- Maintain globally accessible and up-to-date contact information.
- Successful prevention and mitigation of routing incidents strongly depends on effective operational communication and coordination between network operators globally.
- In order to achieve this, it is essential that you maintain your up-to-date contact information in databases that are publicly accessible.
- Network operators are advised to maintain their contact information in several databases (ex. an IRR)

Maintaining Contact Information

MANRS participants should publish and maintain their contact information to their region's RIR Whois Database, IRR Database, PeeringDB and their company website.

Coordination

Fiber@Home Global

Search here for a network, IX, or facility.

Advanced Search

Contact Information

Role 🔓	Name	Phone E-Mail
NOC	NOC	+8801841 <mark>1</mark> 58587 iig@fiberathome.net
Policy	SUMON AHMED SABIR	+8801711527065 sumon@fiberathome.net
Technical	CHINMAY BISWAS	+8801716463150 chinmay.biswas@fiberathome.n et
Technical	ANIRBAN DATTA	+8801847102419 anirban@fiberathome.net

Organization	Fiber@Home Global Limited
Also Known As	PICO
Company Website	http://www.fiberathome.net/
ASN	10075
RR as-set/route-set 😗	AS-FGL
Route Server URL	
Looking Glass URL	
Network Type	NSP
Pv4 Prefixes ?	4500
Pv6 Prefixes 😗	2000
Traffic Levels	200-300Gbps
Traffic Ratios	Mostly Inbound
Geographic Scope	Asia Pacific
Protocols Supported	⊘ Unicast IPv4 ○ Multicast ⊘ IPv6 ○ Never via route servers
Last Updated	2020-12-01T18:20:15Z
Notes 😯	

Coordination

会

Maintaining Contact Information in RIRs: AFRINIC, APNIC, RIPE, LACNIC, ARIN

whois -h whois.apnic.net AS10075

On aveen@LAPTOP-6VNOIOAD: ∼			
aut-num:	AS10075		
as-name:	FGL-AS-BD		
descr:	Fiber@Home Global Limited		
country:	BD		
org:	ORG-FGL3-AP		
admin-c:	FGLA2-AP		
tech-c:	FGLA2-AP		
abuse-c:	AF576-AP		
mnt-lower:	MAINT-FGL-BD		
mnt-routes:	MAINT-FGL-BD		
mnt-by:	APNIC-HM		
mnt-irt:	IRT-FGL-BD		
last-modified:	2020-10-06T14:13:34Z		
source:	APNIC		
irt:	IRT-FGL-BD		
address:	House # 8/B, Road1, Gulshan-1, Dhaka Dhaka 1212		
e-mail:	iig@fiberathome.net		
abuse-mailbox:	iig@fiberathome.net		
admin-c:	FGLA2-AP		
tech-c:	FGLA2-AP		
auth:	# Filtered		
remarks:	: iig@fiberathome.net was validated on 2021-04-13		
mnt-by:	MAINT-FGL-BD		
last-modified:	2021-04-13T13:16:00Z		
ource: APNIC			

naveen@LAPTOP-6VNOIOAD: ~

organisation:	ORG-FGL3-AP
org-name:	Fiber@Home Global Limited
country:	BD
address:	House # 8/B, Road1, Gulshan-1
phone:	+8801817022207
fax-no:	+88028815010
e-mail:	iig@fiberathome.net
mnt-ref:	APNIC-HM
mnt-by:	APNIC-HM
last-modified:	2018-09-17T12:57:28Z
source:	APNIC
role:	ABUSE FGLBD
address:	House # 8/B, Road1, Gulshan-1, Dhaka Dhaka 1212
country:	ZZ
phone:	+00000000
e-mail:	iig@fiberathome.net
admin-c:	FGLA2-AP
tech-c:	FGLA2-AP
nic-hdl:	AF576-AP
remarks:	Generated from irt object IRT-FGL-BD
abuse-mailbox:	iig@fiberathome.net
mnt-by:	APNIC-ABUSE
last-modified:	2020-10-06T14:13:34Z
source:	APNIC
role:	FiberHome Global Limited administrator
address:	House#8/B, Road#1, Gulshan-1, Dhaka Dhaka 1212
country:	BD
phone:	+8801817022207
fax-no:	+8801817022207
e-mail:	iig@fiberathome.net
admin-c:	FGLA2-AP
tech-c:	FGLA2-AP
nic-hdl:	FGLA2-AP
mpt-by:	MAINT-EGL-BD

59

Action 4: Global Validation (IRR/RPKI) Facilitating validation of routing information on a global scale

There are 2 ways to provide the validation information (IRR and/or RPKI)

Providing information through the IRR system

Internet Routing Registries (IRRs) contain information—submitted and maintained by ISPs or other entities—about Autonomous System Numbers (ASNs) and routing prefixes. IRRs can be used by ISPs to develop routing plans.

The global IRR is comprised of a network of distributed databases maintained by Regional Internet Registries (RIRs) such as APNIC, service providers (such as NTT), and third parties (such as RADB).

Routing information should be made available on a global scale to facilitate validation, which includes routing policy, ASNs and prefixes that are intended to be advertised to third parties. Since the extent of the internet is global, information should be made public and published in a well known place using a common format.

Object	Source	Description
aut-num	IRR	Policy documentation
route/route6	IRR	NLRI/origin
as-set	IRR	Customer cone
ROA	RPKI	NLRI/origin

<pre>\$ whois -h whois.apnic.net 1.1.1.0/24</pre>		
route:	1.1.1/24	
origin:	AS13335	
descr:	APNIC Research and Development, 6 Cordelia St	
mnt-by:	MAINT-AU-APNIC-GM85-AP	
last-modified:	2018-03-16T16:58:06Z	
source:	APNIC	

\$ whois -h who	ois.radb.net 1.1.1.0/24	
route:	1.1.1.0/24	
descr:	APNIC Research and Development, 6 Cordelia St	
mnt-by:	MAINT-AU-APNIC-GM85-AP	
last-modified:	2018-03-16T16:58:06Z	
source:	APNIC	
route:	1.1.1/24	
descr:	Cloudflare, Inc.	
descr:	101 Townsend Street, San Francisco, California 94107, US	
origin:	AS13335	
mnt-by:	MNT-CLOUD14	
notify:	rir@cloudflare.com	

Internet Routing Registry (IRR)

- Network operators can document which AS is originating their IPv4/IPv6 prefixes
- Used by operators to filter prefixes received from their customers and peers
- Third party databases need to be used (RADB, Operators/NTT)
 - RADB comes with a recurring yearly subscription costs
 - For RADB, a commercial relationship with merit is required. (lacks accuracy of data)
 - For RADB any paid member can update/delete information for their resources (lots of junk data)
 - For NTTCOM, a customer relationship with them is required.

Resource Public Key Infrastructure (RPKI)

Providing information through the RPKI system

- Store information about prefixes originated by your network in the form of Route Origin Authorization (ROA) objects.
- Only prefixes that belong to our ASN is covered.
- Only the origin ASN is verified, not the full path.
- All Regional Internet Registries (RIR) offers a hosted Resource Certification service.

Resource Public Key Infrastructure (RPKI)

- A security framework for verifying the association between resource holders and their Internet resources
- RPKI is a way to define data in an out-of-band system such that the information that are exchanged by BGP can be validated to be correct.
- RPKI is used to make Internet routing more secure.

Attaches digital certificates to network resources upon request that lists all resources held by the member

- AS Numbers
- IP Addresses

ROA (Route Origin Authorization)

Legitimate holder of a block of IP addresses can use their resource certificate to make an authoritative, signed statement about which BGP AS is authorized to originate their prefix in BGP

- LIRs can create a ROA for each one of their resource (IP address ranges).
- Multiple ROAs can be created for an IP range
- ROAs can overlap

Prefix	103.229.0.0/23
Max-Length	/24
Origin ASN	AS10075

What can RPKI do?

Authoritatively proof:

- Who is the legitimate owner of an address, and
- Identify which ASNs have the permission from the holder to originate the address

Prevents route hijacking

- A prefix originated by an AS without authorization
- Reason: Malicious intent

Prevents mis-orgination

- A prefix that is mistakenly originated by an AS which does not own it, also route leaks
- Reason: configuration mistake / fat finger

RPKI Validation States

Valid

• the prefix (prefix length) and AS pair found in the database.

Invalid

- prefix is found, but origin AS is wrong
- the prefix length is longer than the maximum length

Not Found

- No valid ROA found
- Neither valid nor invalid (perhaps not created)

RPKI Components

Issuing Party – Internet Registries (*IRs)

- Certificate Authority (CA) that issues resource certificates to end-holders
- Publishes the objects (ROAs) signed by the resource certificate holders

What is in a ROA ?

Prefix Validation Status

Validator Software

- NLNetLabs Routinator <u>https://github.com/NLnetLabs/routinator/</u>
- FORT Validator <u>https://github.com/NICMx/FORT-validator/</u>
- Cloudflare OctoRPKI <u>https://github.com/cloudflare/cfrpki</u>
- RPKI-Client <u>https://rpki-client.org/</u>
- Prover <u>https://github.com/lolepezy/rpki-prover</u>
- Rpstir2 <u>https://github.com/bgpsecurity/rpstir2</u>

How to Install Relying Party Software

MANRS - How to Videos

OctoRPKI https://youtu.be/3Lx5wL7oG0c

Routinator https://youtu.be/0dpmeigkTcs

Fort Validator <u>https://youtu.be/lCfUbJhnq3Q</u>

Creating ROAs in MyAPNIC

Resources

Internet Resources

Summary

View all of your resource holdings.

IPv4

View your IPv4 resource holdings.

IPv6

View your IPv6 resource holdings.

AS Numbers

View your ASN resource holdings.

Reverse DNS Delegations

Add Reverse Delegations

Add new reverse delegations.

Reverse Delegation Summary

View and manage reverse delegations

Whois Updates

Whois Updates

Add, update, and delete individual Whois objects. Bulk Whois Updates

Add, update, and delete multiple Whois objects.

Contact Details Update

Update contact details of the internet resources associated with yc

Maintainers

View your registered maintainers, and register new maintainers.

IRTs

View your registered IRT objects, and register new IRT objects.

Resource certification

RPKI

Set up your RPKI engine, and manage your Route Origin Authoriza

Route management

Routes

objects.

Add, update, delete and view routes. Create Route Origin Authorisi routes.

Home / Resources / Routes

Routes

O Routes

Register your routes in MyAPNIC using the tool below. It will automatically create route objects in the APNIC Whois Database with any AS number you have authorized. RPKI ROAs will also be created at the same time, if the ROA option is enabled (changes to RPKI may take around ten minutes to propagate so the ROA status will not be updated until then).

Create route Delete selected Show 10 • entries Select all Deselect all						
	Route Ji	Origin AS	ROA status 🕄	Whois status 0	Actions	
	2001:df0:a::/48	AS45192	0	0	Edit Delete	
	2001:df2:ee00::/48	AS131107	0	0	Edit Delete	
	2001:df2:ee01::/48	AS45192	0	0	Edit Delete	
כ	202.125.96.0/24	AS131107	0	0	Edit Delete	
כ	202.125.97.0/24	AS45192	0	ø	Edit Delete	

Requests

Creating ROA (IPv6 Prefix)

te route		
Prefix	2406:6400::/32	
Origin AS	45192	
0 MSA	/48	
O ROA	Enabled	
Whois	Enabled	
Options	Notify additional contacts	
		Cancel

ROA	Enabled	
Whois	Disabled	
Prefix	2406:6400::/32	
Origin AS	45192	
Most specific announcement	/48 (distance from prefix length: 16)	

Creating ROA (IPv4 Prefix)

Create route		×
Prefix	61.45.248.0/21	
Origin AS	45192	
0 MSA	/24	
O ROA	Enabled	
Whois	Enabled	
	Define Whois route attributes	
Options	Notify additional contacts	
		Cancel Next

Confir	m route creation			
	ROA	Enabled		
	Whois	Enabled		
	Prefix	61.45.248.0/21		
	Origin AS	45192		
	Most specific announcement	/24 (distance from prefix length: 3)		
Select th	e sub-routes to be enabled 0 :			
Show 1	10 - entries		Search:	
Select	all Deselect all			
Ros	ute			11
61.4	45.248.0/21			
6 1.4	45.248.0/22			
61.4	45.248.0/23			
61.4	45.248.0/24			
61.4	45.249.0/24			
61.4	45.250.0/23			
61.4	45.250.0/24			
6 1.4	45.251.0/24			
61.4	45.252.0/22			
C 61.4	45.252.0/23			
Showing	1 to 10 of 15 entries 15 rows selected		Previous 1 2 No	ext
			Cancel Go back Subr	mit

Route Origin Validation (ROV)

How to Videos ~ Creating ROAs

MyAPNIC:

https://youtu.be/NLG2siznuu4

AFRINIC: <u>https://youtu.be/jBWCdfM0jcM</u>

ARIN:

https://youtu.be/dueSmJwWzQ4

LACNIC:

https://youtu.be/VLcvfEJ8T4Y

RIPE-NCC:

https://youtu.be/KgUXsTKW2b4

Route Origin Validation (ROV) – Implementations

- Cisco IOS available from release 15.2
- Cisco IOS/XR available from release 4.3.2
- Juniper available from release 12.2
- Nokia available from release R12.0R4
- Huawei available from release V800R009C10
- FRR available from release 4.0
- BIRD available from release 1.6
- OpenBGPD available from OpenBSD release 6.4
- GoBGP available since 2018
- VyOS available from release 1.2.0-RC11
- Mikrotik ROS available from release v7

Implement Origin Validation (ROV) ~ Cisco (IOS-XE, IOS-XR), Juniper, Arista

MANRS - How to Videos

Cisco Router ROV configuration <u>https://youtu.be/820_CvW6T8c</u>

Juniper JunOS ROV configuration https://youtu.be/NtQ4sqLmw18

Arista ROV configuration <u>https://youtu.be/rXLtZcSY6gc</u>

ROA data by Country (%)

Where to find ROA? | https://roa-stats.manrs.org/

⊗ м.	ANRS H	ROA Stats	1001		
HOME	BY COUNTRY	BY ASN	Problem with the data?		MANRS
	Со	untry re	eport for Fij	i	
		4	90		

Prefix	ASN	ASN Name	Status
45.117.240.0/22	45355	DIGICELPACIFIC-1-AP Digicel Fiji Limited	Valid
27.123.128.0/18	38442	VODAFONEFIJI-AS-FJ Vodafone Fiji Limited	Valid
45.112.224.0/22	4638	IS-FJ-AS Telecom Fiji Limited	Valid
45.117.240.0/24	45355	DIGICELPACIFIC-1-AP Digicel Fiji Limited, FJ	Valid
103.58.20.0/22	45355	DIGICELPACIFIC-1-AP Digicel Fiji Limited	Valid

#Protect the Core

LEARN MORE: <u>https://www.manrs.org</u>

https://www.manrs.org/join/

