BGP Enhancements for IPv6

ISP/IXP Workshops
Adding IPv6 to BGP…

• RFC2858
 Defines *Multi-protocol Extensions for BGP4*
 Enables BGP to carry routing information of protocols other than IPv4
 e.g. MPLS, IPv6, Multicast etc
 Exchange of multiprotocol NLRI must be negotiated at session startup

• RFC2545
 Use of BGP Multiprotocol Extensions for IPv6 Inter-Domain Routing
• New optional and non-transitive BGP attributes:

 MP_REACH_NLRI (Attribute code: 14)
 Carry the set of reachable destinations together with the next-hop information to be used for forwarding to these destinations (RFC2858)

 MP_UNREACH_NLRI (Attribute code: 15)
 Carry the set of unreachable destinations

• Attribute contains one or more Triples:

 AFI Address Family Information
 Next-Hop Information (must be of the same address family)
 NLRI Network Layer Reachability Information
Adding IPv6 to BGP…

- Address Family Information (AFI) for IPv6

 AFI = 2 (RFC 1700)

 - Sub-AFI = 1 Unicast
 - Sub-AFI = 2 Multicast for RPF check
 - Sub-AFI = 3 for both Unicast and Multicast
 - Sub-AFI = 4 Label
 - Sub-AFI = 128 VPN
• Rules for constructing the NEXTHOP attribute:

 When two peers share a common subnet, the NEXTHOP information is formed by a global address and a link local address.

 Redirects in IPv6 are restricted to the usage of link local addresses.
Routing Information

• Independent operation
 One RIB per protocol
 e.g. IPv6 has its own BGP table
 Distinct policies per protocol

• Peering sessions can be shared when the topology is congruent
BGP next-hop attribute

- Next-hop contains a global IPv6 address (or potentially a link local address)
- Link local address as a next-hop is only set if the BGP peer shares the subnet with both routers (advertising and advertised)
More BGP considerations

• TCP Interaction
 BGP runs on top of TCP
 This connection could be set up either over IPv4 or IPv6

• Router ID
 When no IPv4 is configured, an explicit bgp router-id needs to be configured
 BGP identifier is a 32 bit integer currently generated from the router identifier – which is generated from an IPv4 address on the router
 This is needed as a BGP identifier, this is used as a tie breaker, and is send within the OPEN message
Router1#
interface Ethernet0
 ipv6 address 2001:db8:c18:2:1::f/64
!
router bgp 65001
 bgp router-id 10.10.10.1
 no bgp default ipv4-unicast
 neighbor 2001:db8:c18:2:1::1 remote-as 65002
 address-family ipv6
 neighbor 2001:db8:c18:2:1::1 activate
 neighbor 2001:db8:c18:2:1::1 prefix-list bgp65002in in
 neighbor 2001:db8:c18:2:1::1 prefix-list bgp65002out out
exit-address-family
BGP Configuration

• Two options for configuring iBGP peering
• Using link local addressing
 ISP uses FE80:: addressing for iBGP neighbours
 NOT RECOMMENDED
 There are plenty of IPv6 addresses
 Unnecessary configuration complexity
• Using global unicast addresses
 As with IPv4
 RECOMMENDED
BGP Configurations
Non Link Local Peering

Router A

router bgp 1
 no bgp default ipv4 unicast
 bgp router-id 1.1.1.1
 neighbor 2001:db8::2/64 remote-as 2

 address-family ipv6
 neighbor 2001:db8::2/64 activate
 network 2001:db8:2::/64
 network 2001:db8:3::/64

!
Router A

interface e2
 ipv6 address 2001:db8::ffco:1::1/64

router bgp 1
 no bgp default ipv4 unicast
 bgp router-id 1.1.1.1
 neighbor fe80::260:3eff:c043:1143 remote-as 2
 neighbor fe80::260:3eff:c043:1143 update source e2
 address-family ipv6
 neighbor fe80::260:3eff:c043:1143 activate
 neighbor fe80::260:3eff:c043:1143 route-map next-hop out
 route-map next-hop permit 5
 set ipv6 next-hop 2001:db8::ffco:1::1

!
router bgp 10
 no bgp default ipv4-unicast
 neighbor 2001:db8:1:1019::1 remote-as 20
 neighbor 172.16.1.2 remote-as 30
!
 address-family ipv4
 neighbor 172.16.1.2 activate
 neighbor 172.16.1.2 prefix-list ipv4-ebgp in
 neighbor 172.16.1.2 prefix-list v4out out
 network 172.16.0.0
 exit-address-family
!
 address-family ipv6
 neighbor 2001:db8:1:1019::1 activate
 neighbor 2001:db8:1:1019::1 prefix-list ipv6-ebgp in
 neighbor 2001:db8:1:1019::1 prefix-list v6out out
 network 2001:db8::/32
 exit-address-family
!
BGP Configuration
Filtering Prefixes

• IOS Prefix-list is used for filtering prefixes in IPv4
 And for IPv6 too!
• Example:
 ipv6 prefix-list in-filter seq 5 permit 2001::/16 le 32
 ipv6 prefix-list in-filter seq 6 permit 2004::/16 le 48
• Apply to the BGP neighbor:

```
router bgp 1
  no bgp default ipv4 unicast
  bgp router-id 1.1.1.1
  neighbor 2001:db8:ffff:2::2 remote-as 2
  address-family ipv6
    neighbor 2001:db8:ffff:2::2 activate
    neighbor 2001:db8:ffff:2::2 prefix-list in-filter in
```
BGP Configuration
Manipulating Attributes

- Prefer routes from AS 2 (local preference)

```
router bgp 1
  no bgp default ipv4-unicast
  neighbor 2001:db8:c18:2:1::1 remote-as 2
  neighbor 2001:db8:c18:2:1::2 remote-as 3

! address-family ipv6
  neighbor 2001:db8:c18:2:1::1 activate
  neighbor 2001:db8:c18:2:1::1 prefix-list in-filter in
  neighbor 2001:db8:c18:2:1::1 route-map fromAS2 in
  neighbor 2001:db8:c18:2:1::2 activate
  neighbor 2001:db8:c18:2:1::2 prefix-list in-filter in
  network 2001:db8::/24
  exit-address-family

! route-map fromAS2 permit 10
  set local-preference 120
```
IPv4 prefixes can be carried inside an IPv6 peering

Note that we need to “fix” the next-hop

Example

```plaintext
router bgp 1
    neighbor 2001:db8::1:2 remote-as 2

address-family ipv4
    neighbor 2001:db8::1:2 activate
    neighbor 2001:db8::1:2 route-map ipv4 in

route-map ipv4 permit 10
    set ip next-hop 131.108.1.1
```
BGP Status Commands

- IPv6 BGP show commands take *ipv6* as argument

  ```
  show bgp ipv6 unicast parameter
  ```

```
Router1#show bgp ipv6 unicast 2017::/96
BGP routing table entry for 2017::/96, version 11
Paths: (1 available, best #1)
  Local
  2001:db8:c18:2:1::1 from 2001:db8:c18:2:1::1 (10.10.20.2)
    Origin incomplete, localpref 100, valid, internal, best
```
BGP Status Commands

Display summary information regarding the state of the BGP neighbours
 show bgp ipv6 unicast summary

BGP router identifier 128.107.240.254, local AS number 109
BGP table version is 400386, main routing table version 400386
585 network entries using 78390 bytes of memory
9365 path entries using 674280 bytes of memory
16604 BGP path attribute entries using 930384 bytes of memory
8238 BGP AS-PATH entries using 228072 bytes of memory
42 BGP community entries using 1008 bytes of memory
9451 BGP route-map cache entries using 302432 bytes of memory
584 BGP filter-list cache entries using 7008 bytes of memory
BGP using 2221574 total bytes of memory
Dampening enabled. 3 history paths, 11 dampened paths
2 received paths for inbound soft reconfiguration
BGP activity 63094/62437 prefixes, 1887496/1878059 paths, scan interval 60 secs

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
2001:1458:C000::64B:4:1 4 513 1294728 460213 400386 0 0 3d11h 498

Neighbour Information BGP Messages Activity
Conclusion

• BGP extended to support multiple protocols
 IPv6 is but one more address family
• Operators experienced with IPv4 BGP should have no trouble adapting
 Configuration concepts and CLI is familiar format
BGP Enhancements for IPv6