
Git for everyone

KINDNS: DNS & DNSSEC operational best
practices to improve the DNS Ecosystem

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements
• I originally prepared this presentation for an online session during the Dark Ages in

December 2021 with funding from ISOC. The original title at the time was GitHub
management for network engineers. A recording can be found on YouTube as of April 2025:

https://www.youtube.com/live/fgRjoNiWHJ4?si=ZoqQdA7Oazd6S9HZ

• Thanks to Aftab Siddiqui and Massimiliano Stucchi for inviting me to put this together and for
arranging the funding.

• I keep tinkering with this presentation. It lives on as part of my KINDNS: best practices for
DNS operations workshop. Bug reports and suggestions for improvement are welcome.

Philip Paeps
philip@trouble.is

8 April 2025

https://www.youtube.com/live/fgRjoNiWHJ4?si=ZoqQdA7Oazd6S9HZ

Share and enjoy!

These materials are licensed under the Creative Commons
Attribution-NonCommercial 4.0 International licence
http://creativecommons.org/licenses/by-nc/4.0/

Please report bugs, errors or omissions.

Agenda

1. Revision control essentials
2. Git survival kit for DNS ops
3. Using GitHub to collaborate

REVISION CONTROL ESSENTIALS
Computers are better at remembering things than you are.

Revision control for DNS operators

Revision control systems remember changes you make to
your DNS. With good revision control hygiene, you can
easily:
• Revert configurations to a known working state
• Review changes before deploying them to production
• Recover configurations when servers break
• Collaborate on projects with others without conflicts

Not only for source code and configuration

Revision control systems don’t care about the data they
control. Use them to track changes and collaborate on all
sorts of things:
• Internet drafts
• Network policy documents
• Training materials
• Presentations
• DNS configuration files

Revision control options

Amount of control Pros and cons
Chaos reigns
Loose files all over the place

✓ Easy to learn
✗ Impossible to undo changes

Archiving for posterity
NFS, SMB, OneDrive, Dropbox,…

✓ Audit and roll back previous versions
✗ Concurrent access nightmares

Revision control
CVS, Subversion, Git, etc.

✓ Full control and low-friction collaboration
✗ Learning curve

Basics of revision control

GIT SURVIVAL KIT FOR DNS OPS

Revision control system? Content addressable filesystem?
Something software people use? A synonym for software people?
Why should DNS operators care?

10

What is Git anyway?
Git is a free and open
source distributed version
control system designed to
handle everything from small to
very large projects with speed
and efficiency.

From git-scm.com

GitHub is a company providing
a cloud service built around Git.

https://xkcd.com/1597/

Be nice to your future self
The Git commit command
writes staged changes to the
repository. The commit
message should explain what
the changes are intended to do.

The log of a repository are notes
to your future self. When things
break, you will want to read
them. https://xkcd.com/1296/

Git commands for everyday use
Get a repository
git init
git clone
Manipulate the index
git add
git rm
Commit changes
git commit
Review logs
git log
git show

Figure out what’s happening
git status
git diff

Undo changes
git reset
git checkout

Work with others
git fetch
git rebase

GUI Git tools
Git comes with two GUIs: gitk for
browsing branches and git-gui for
preparing/staging commits.
Neither of them is particularly
useful.

Atlassian Sourcetree (free) is pretty
and works well.

GitHub has desktop clients (also
free).

Five-minute intro to Git (demo)
Create a new repository
git init

Add a file to the staging area
git add

Commit changes to the
repository
git commit

Show history
git log

A series of snapshots
Each commit is a snapshot of the
repository at that point in time.

Git references snapshots by the
SHA-1 hash of their contents.

Most Git operations are local.
Git generally only adds data. It is
difficult to lose data once
committed.

Git terminology: states and the index
Three main states of Git:
• Modified files have uncommitted

changes
• Staged changes will be written

to the repository in the next
commit (“index”)

• Committed changes are safely
stored

Not really a state:
• Untracked files are unknown to

Git

Git workflow: recording changes

Using the index effectively (demo)
Stage changes before
committing
git add --patch

Undo local changes
git restore

Keeping track of local changes
git status
git diff

Basics of Git branches
A branch is a named pointer to a
snapshot (commit) known to Git.

Git makes it easy to switch
between branches and record
distinct histories.

The HEAD points to the
currently checked out branch
(commit).

Branching essentials (demo)
Create a new branch
git branch <branch>
git checkout –b <branch>

Switching between branches
git checkout <branch>

Keeping track of changes on
branches
git log <branch>
git diff <branch>

Branches: creating a branch
Creating a branch adds a new
pointer. The HEAD does not
move.

git branch testing

Branches: switching to another branch (1)
Switching to a branch moves the
HEAD.

git checkout testing

Branches: committing to a branch
Committing a change moves the
current branch and the HEAD.

$EDITOR file.txt
git commit -m "change
made"

Branches: switching to another branch (2)
Switching to a branch moves the
HEAD.

git checkout testing

The commit only exists on the
testing branch.

Branches: divergent histories
Committing a change moves the
current branch and the HEAD.

$EDITOR file.txt
git commit -m "change
made”

The histories have diverged.
Switching between master and
testing will show their respective
histories.

Using branches to track changes (demo)
Remembering where you’ve
been
git reflog

Moving branches
git reset

Keeping track of changes on
branches
git log --graph <branch>
git diff <branch>

Remote repositories
Git is a distributed revision
control system. Adding remote
repositories enables sharing
changes with others.

Notes that “remote” repositories
can be elsewhere on the “local”
machine too.

Working with repositories
A remote is a complete clone of
the repository including all
history. This makes
collaborating with others easy.

There are several possible
workflows of differing
complexity. Most of these are
irrelevant to network engineers.

Using remote repositories (demo)
Adding remote repositories
git remote add <name> <URL>

Sharing changes with remotes
git push <remote> <branch>

Getting changes from others
git fetch <remote>
git fetch --all

Merging changes from others
git rebase <branch>

GITHUB
Collaboration tools and Git repository hosting.

31

Tools for collaboration
GitHub provides hosting for Git
repositories.

Superficially targeted at software
projects but great for any Git
repository.

Issue tracker. Pull requests.
Wiki.

The GitHub workflow

1. Fork a repository from a project
2. Clone your fork and make changes on a branch
3. Push the branch to your namespace
4. Create a Pull Request in the project repository
5. Discuss changes and push updates to your branch
6. Project owner merges the accepted pull request

Using GitHub for automation
GitHub has nice integrations
with continuous deployment /
continuous integration
workflows.

Credits and further reading

Most of the images in this presentation are from the excellent
“Pro Git” book by Scott Chacon and Ben Straub. (CC BY-NC-
SA 3.0)
Book: https://git-scm.com/book/en/v2/
Source code: https://github.com/progit/progit2
GitHub cheat sheet
https://training.github.com/downloads/github-git-cheat-sheet/
Escaping a Git mess (Justin Hileman)
http://justinhileman.info/article/git-pretty/

https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
https://github.com/progit/progit2
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
https://training.github.com/downloads/github-git-cheat-sheet/
http://justinhileman.info/article/git-pretty/
http://justinhileman.info/article/git-pretty/
http://justinhileman.info/article/git-pretty/

