
Phil Regnauld
Hervey Allen

June 2009
Papeete, Tahiti

 http://nsrc.org/workshops/2009/pacnog5/meeting/dnssec/

DNSSEC overview

Overview

 We will talk about:

 the problems that DNSSEC addresses
 the protocol and implementations
 the practical problems tied to real-world deployment

 We will cover the state of things with regards to
deployment (root signature, alternatives, …)

Contents

 Scope of the problem
 DNS reminders
 Basics of DNSSEC
 Operations
 Issues (what isn't solved) & other aspects
 Status of DNSSEC today
 Live demonstration

What's the problem?

So what are the issues?

DNS Cache Poisoning
− Forgery: respond before the intended nameserver
− Redirection of a domain's nameserver
− Redirection of NS records to another target domain

DNS Hijacking
− Response to non-existent domains
− Rogue DNS servers

These have been spotted in the wild – code IS available...

What's the problem?

What risks ?

 See Dan Kaminsky's slides for the extent of the risks
− MANY case scenarios
− Scary stuff:

MX hijacking
Entire domain redirection
Take a large .COM offline
Complete spoofing of a bank's DNS info
More fun stuff

Refresher

DNS reminders

 ISC BIND zone file format is commonly used, and we
will use this notation here.

zone. SOA (2009022401 ; serial
 1d ; refresh
 12h ; retry
 1w ; expire
 1h) ; neg. TTL

zone. NS ns.zone.
 NS ns.otherzone.

zone. MX 5 server.otherzone.
www.zone. A 1.2.3.4
...

DNS reminders

 Record structure:

NAME [TTL] TYPE DATA (type specific)
--
host.zone. 3600 A 10.20.30.40
sub.zone. 86400 MX 5 server.otherzone.

DNS reminders

 Multiple resource records with same name and type
are grouped into Resource Record Sets (RRsets):

mail.zone. MX 5 server1.zone.
mail.zone. MX 10 server2.zone.

server1.zone. A 10.20.30.40
server1.zone. A 10.20.30.41
server1.zone. A 10.20.30.42

server1.zone. AAAA 2001:123:456::1
server1.zone. AAAA 2001:123:456::2

server2.zone. A 11.22.33.44

RRset

RRset

RRset

RRset

DNS points of attack

DNS Data Flow
Points of attack

STUB
resolver

STUB
resolver

caching
resolver

(recursive)

caching
resolver

(recursive)

MASTERMASTER

SLAVESSLAVESSLAVES

zone
file

(text,
DB)

dynamic
updates

man in the
middle

cache
poisoning

modified
data

Zone
Transfer

spoofing
master

(routing/DoS)

spoofed
updates

corrupted
dataA

T
TA

C
K

V
E

C
T

O
R

S

D
A

TA

DNSSEC concepts

Public key cryptography refresher

DNSSEC quick summary

 Data authenticity and integrity by signing the
Resource Records Sets with private key

 Public DNSKEYs published, used to verify the
RRSIGs

 Children sign their zones with their private key
− Authenticity of that key established by
signature/checksum by the parent of the (DS)
delegation signer record

 Repeat for parent...
 Not that difficult on paper

− Operationally, it is a bit more complicated

DNSSEC overview

DNS SECurity extensions

 Concepts
 New Resource Records (DNSKEY, RRSIG,
NSEC/NSEC3 and NS)

 New packet options (CD, AD, DO)
 Setting up a Secure Zone
 Delegating Signing Authority
 Key Rollovers

DNSSEC concepts

 Changes DNS trust model from one of ”open” and
”trusting” to one of ”verifiable”

 Extensive use of public key cryptography to provide:
− Authentication of origin
− Data integrity
− Authenticated denial of existence

 No attempt to provide confidentiality
 DNSSEC does not place computational load on the
authoritative servers (!= those signing the zone)

 No modifications to the core protocol
− Can coexist with today's infrastructure

 ... kind of (EDNS0)

DNSSEC concepts

 Build a chain of trust using the existing delegation-
based model of distribution that is the DNS

 Don't sign the entire zone, sign a RRset

 Note: the parent DOES NOT sign the child zone.
−The parent signs a pointer (hash) to the key used to
sign the data of child zone (important!)

“.”

ORG

PACNOG

CONFERENCE

SIG
NE

D
SIG

NE
D

SIG
NE

D

SIG
NE

D

New Resource Records

DNSSEC: new RRs

Adds four new DNS Resource Records*:

1 DNSKEY: Public key used in zone signing
operations.

2 RRSIG: RRset signature
3 NSEC/NSEC3: Returned as verifiable evidence that

the name and/or RR type does not exist
4 DS: Delegation Signer. Contains the hash of the

public key used to sign the key which itself will be
used to sign the zone data. Follow DS RR's until a
”trusted” zone is reached (ideally the root).

*See Geoff Huston's excellent discussion at http://ispcolumn.isoc.org/2006-08/dnssec.html

http://ispcolumn.isoc.org/2006-08/dnssec.html

DNSSEC: DNSKEY RR

MYZONE. 600 DNSKEY 256 3 5 (

 AwEAAdevJXb4NxFnDFT0Jg9d/jRhJwzM/YTu
 PJqpvjRl14WabhabS6vioBX8Vz6XvnCzhlAx

 ...) ; key id = 5538

TYPE FLAGSOWNER PROTOCOL

- FLAGS determines the usage of the key (more on this...)
- PROTOCOL is always 3 in the current version of DNSSEC
- ALGORITHM can be:
 0 – reserved
 1 – RSA/MD5 (deprecated)
 2 – Diffie/Hellman
 3 – DSA/SHA-1 (optional)
 4 – reserved
 5 – RSA/SHA-1 (mandatory)

ALGORITHM

PUBLIC KEY
(BASE64)

KEY ID

DNSSEC: DNSKEY RR

 There are in practice at least two DNSKEY pairs for
every zone:
−Originally, one key-pair (public, private) defined for
the zone:
private key used to sign the zone data (RRsets)
public key published (DNSKEY) in zone
DS record (DNSKEY hash) published in parent
zone, and signed in turn with rest of data

 Problem with using a single key:
−to update this key, DS record in parent zone needs
to be updated (since DS is fingerprint of public key)
Introduction of Key Signing Key (flags = 257)

DNSSEC: KSK and ZSK

 To allow for key updates (“rollovers”), generate two
keys:
−Key Signing Key (KSK)

pointed to by parent zone (Secure Entry Point), in
the form of DS (Delegation Signer)

used to sign the Zone Signing Key (ZSK)
−Zone Signing Key (ZSK)

signed by the Key Signing Key
used to sign the zone data RRsets

 This decoupling allows for independent updating of
the ZSK without having to update the KSK, and
involve the parent – less administrative interaction.

DNSSEC: RRSIG

 Resource Record Signature
−lists the signatures performed using the ZSK on a
given RRset

test.myzone. 600 RRSIG A 5 2 600 20090317182441 (

 20090215182441 5538 myzone.

 rOXjsOwdIr576VRAoIBfbk0TPtxvp+1PI0XH
 p1mVwfR3u+ZuLBGxkaJkorEngXuvThV9egBC
 ...
)

TYPE
TYPE

COVERED ALGO # LABELS ORIG. TTL SIG. EXPIR.

2 1

SIG. CREAT.

KEY ID
SIGNER NAME

SIGNATURE = SIG(records +) RRSIG-RDATA -- SIG

DNSSEC: RRSIG

 By default:
− Signature creation time is 1 hour before
− Signature expiration is 30 days from now
− Needless to say, proper timekeeping (NTP) is strongly
recommended

 What happens when the signatures run out ?
− SERVFAIL...
− Your domain effectively disappears from the Internet
− ... more on this later

 Note that the keys do not expire.
 Therefore, regular re-signing is part of the operations
process (not only when changes occur)
− the entire zone doesn't have to be resigned...

DNSSEC: NSEC/NSEC3

 NSEC – proof of non-existence
 Remember, the authoritative servers are serving
precalculated records. No on-the-fly generation is
done.
−NSEC provides a pointer to the Next SECure record
in the chain of records.
“there are no other records between this one and
the next”, signed.

−The entire zone is sorted lexicographically:

myzone.
sub.myzone.
test.myzone.

DNSSEC: NSEC/NSEC3

myzone. 10800 NSEC test.myzone. NS SOA RRSIG NSEC DNSKEY

myzone. 10800 RRSIG NSEC 5 1 10800 20090317182441 (

 20090215182441 5538 myzone.

 ZTYDLeUDMlpsp+IWV8gcUVRkIr7KmkVS5TPH

 KPsxgXCnjnd8qk+ddXlrQerUeho4RTq8CpKV

 ...

)
 Last NSEC record points back to the first.
 Problem:

− Zone enumeration (walk list of NSEC records)
− Yes, DNS shouldn't be used to store sensitive information,
but future uses may require this “feature”

DNSSEC: NSEC/NSEC3

 If the server responds NXDOMAIN:
− One or more NSEC RRs indicate that the name (or a
wildcard expansion) does not exist

 If the server's response is NOERROR:
−...and the answer section is empty

The NSEC proves that the TYPE did not exist

DNSSEC: NSEC/NSEC3

 What about NSEC3 ?
− We won't get into this here, but the short story is:

Don't sign the name of the Next SECure record, but a hash of it
− Still possible to prove non-existence, without revealing name.

This is a simplified explanation. RFC 5155 covering NSEC3 is
53 pages long.

− Also introduces the concept of “opt-out” (see section 6 of
the RFC) which has uses for so-called delegation-centric
zones with unsigned delegations – in short: don't bother
signing RRsets for delegations which you know don't
implement DNSSEC.

DNSSEC: DS

 Delegation Signer
 Hash of the KSK of the child zone
 Stored in the parent zone, together with the NS RRs
indicating a delegation of the child zone

 The DS record for the child zone is signed together
with the rest of the parent zone data
NS records are NOT signed (they are a hint/pointer)

myzone. DS 61138 5 1
F6CD025B3F5D0304089505354A0115584B56D683
myzone. DS 61138 5 2
CCBC0B557510E4256E88C01B0B1336AC4ED6FE08C826
8CC1AA5FBF00 5DCE3210

 digest = hash(canonical FQDN on KEY RR | KEY_RR_rdata)

Digest type 1 = SHA-1, 2 = SHA-256

DNSSEC: DS

 Two hashes generated by default:
− 1 SHA-1 MANDATORY
− 2 SHA-256 MANDATORY

 New algorithms are being standardised upon
 This will happen continually as algorithms are broken/proven to be

unsafe

DNSSEC: new fields

 Updates DNS protocol at the packet level
 Non-compliant DNS recursive servers should ignore
these:

− CD: Checking Disabled (ask recursing server to not perform
validation, even if DNSSEC signatures are available and
verifiable, i.e.: a Secure Entry Point can be found)

− AD: Authenticated Data, set on the answer by the validating
server if the answer could be validated, and the client requested
validation

 A new EDNS0 option
− DO: DNSSEC OK (EDNS0 OPT header) to indicate client

support for DNSSEC options

Live demo using dig

Security Status of Data
(RFC4035)

 Secure
− Resolver is able to build a chain of signed DNSKEY and DS RRs from a trusted

security anchor to the RRset

 Insecure
− Resolver knows that it has no chain of signed DNSKEY and DS RRs from any

trusted starting point to the RRset

 Bogus
− Resolver believes that it ought to be able to establish a chain of trust but for

which it is unable to do so
− May indicate an attack but may also indicate a configuration error or some form

of data corruption

 Indeterminate
− Resolver is not able to determine whether the RRset should be signed

Signing a zone...

Enabling DNSSEC

 Multiple systems involved
− Stub resolvers

Nothing to be done... but more on that later

− Caching resolvers (recursive)
Enable DNSSEC validation

− Authoritative servers
Enable DNSSEC logic (if required)

− Signing & serving need not be performed on same
machine

− Signing system can be offline

Signing the zone

1.Generate keypair

2.Include public DNSKEYs in zone file

3.Sign the zone using the secret keys

4.Publishing the zone

5.Push DS record up to your parent

6.Wait...

1. Generating the keys

Generate ZSK

dnssec-keygen -a rsasha1 -b 1024 -n ZONE myzone

Generate KSK

dnssec-keygen -a rsasha1 -b 2048 -n ZONE -f KSK myzone

This generates 4 files:

 Kmyzone.+005+id_of_zsk.key

 Kmyzone.+005+id_of_zsk.private

 Kmyzone.+005+id_of_ksk.key

 Kmyzone.+005+id_of_ksk.private

2. Including the keys into the zone

Include the DNSKEY records for the ZSK and KSK into the
zone, to be signed with the rest of the data:

 cat Kmyzone*key >>myzone

or add to the end of the zone file:

 $INCLUDE “Kmyzone.+005+id_of_zsk.key”

 $INCLUDE “Kmyzone.+005+id_of_ksk.key”

3. Signing the zone

Sign your zone
 # dnssec-signzone myzone
 dnssec-signzone will be run with all defaults for signature duration,

the serial will not be incremented by default, and the private keys to
use for signing will be automatically determined.

 Signing will:
− Sort the zone (lexicographically)
− Insert:

− NSEC records
− RRSIG records (signature of each RRset)
− DS records from child keyset files (for parent)

− Generate key-set and DS-set files, to be communicated to the
parent

4. Publishing the signed zone

 Publish signed zone by reconfiguring the nameserver to
load the signed zonefile.

 ... but you still need to communicate the DS RRset in a
secure fashion to your parent, otherwise no one will
know you use DNSSEC

5. Pushing DS record to parent

 Need to securely communicate the KSK derived DS
record set to the parent
− RFCs 4310, 5011

 ... but what if your parent isn't DNSSEC-enabled ?
− manually distributing your public keys is too
complicated

− could there be an easier mechanism
Until The Root Is Signed� ?

Enabling DNSSEC in the resolver

 Configure forwarding resolver to validate DNSSEC
− not strictly necessary, but useful if only to verify that
your zone works

 Test...
 Remember, validation is only done in the resolver.

Questions so far ?

Summary

• Generating keys

• Signing and publishing the zone

• Resolver configuration

• Testing the secure zone

So, what does DNSSEC protect ?

STUB
resolver

STUB
resolver

caching
resolver

(recursive)

caching
resolver

(recursive)

MASTERMASTER

SLAVESSLAVESSLAVES

zone
file

(text,
DB)

dynamic
updates

man in the
middle

cache
poisoning

modified
data

Zone
Transfer

spoofing
master

(routing/DoS)

spoofed
updates

corrupted
data

PROTECTION BY DNSSEC

A
T

TA
C

K
V

E
C

T
O

R
S

D
A

TA

(TSIG)

What doesn't it protect ?

Confidentiality
−The data is not encrypted

Communication between the stub resolver (i.e:
your OS/desktop) and the caching resolver.
−For this, you would have to useTSIG (but not
standardized), or you will have to trust your
nearest resolver...

−... it performs all validation on your behalf

So why isn't it implemented ?

Many different reasons...
−It's ”complicated”. Requires more work. Tools will
help with this. Operational experience is the
keyword.

−Risks of failure (failure to sign, failure to update)
what will result in your zone disappearing

−Specification has changed several times since
the 90s

−NSEC Allow(ed|s) for zone enumeration.
−Until Kaminsky, maybe not obvious enough why
we needed DNSSEC.

−The root (.) is not yet signed - it's political...

Delegating Signing Authority

Using the DNS to Distribute Keys

Secured islands make key distribution problematic
Distributing keys through DNS:

−Use one trusted key to establish authenticity of other
keys

−Building chains of trust from the root down
−Parents need to sign the keys of their children

Only the root key needed in ideal world
−Parents always delegate security to child
− ... but it doesn't help to sign if your parent doesn't sign,
or isn't signed itself...

Walking the Chain of Trust
(thank you RIPE :)

 (root) .

 Trusted Key . 8907

net.

pacnog.org.

Locally Configured

 pacnog.org. DNSKEY (…) rwx002… (4252) ; KSK
 DNSKEY (…) sovP42… (1111) ; ZSK

 RRSIG DNSKEY (…) 4252 pacnog.org. 5t...

 www.pacnog.org. A 202.12.29.5
 RRSIG A (…) 1111 pacnog.org. a3...

 org. DNSKEY (…) q3dEw… (7834) ; KSK
 DNSKEY (…) 5TQ3s… (5612) ; ZSK

 RRSIG DNSKEY (…) 7834 org. cMas…

 pacnog.org. DS 4252 3 1ab15…
 RRSIG DS (…) org. 5612

. DNSKEY (…) 5TQ3s… (8907) ; KSK
 DNSKEY (…) lasE5… (2983) ; ZSK

 RRSIG DNSKEY (…) 8907 . 69Hw9…

 org. DS 7834 3 1ab15…
 RRSIG DS (…) . 2983

Ok, but what do we do
Until The Root Is Signed� ?

 Use of Trust Anchors, either explicitly configured or using
third party providers

−A DNS resource record store that contains SEP keys for
one or more zones.

 Two initiatives exist to provide these Trust Anchor
Repositories.

− for TLDs
− for other domains

 Note: this is our interpretation of the current situation, and
does not necessarily reflect the position of the parties
involved.

Trust Anchor Repositories...
DLV and ITAR

DLV: DNSSEC Lookaside Validation
−Alternative method for chain of trust creation and
verification in a disjointed signed space (islands of trust)

−DLV functions automatically (if the resolver is
configured to do so) by looking up in a preconfigured
“lookaside validation” zone
no need to fetch a list of anchors
ISC Initiative: https://www.isc.org/solutions/dlv

https://www.isc.org/solutions/dlv

Trust Anchor Repositories...
DLV and ITAR

ITAR: Interim Trust Anchor Repositories
− Interim Trust Anchor Repository
− IANA Trust Anchor Repository (Until The Root Is
Signed�)
Is targeted at TLDs
Lookup is not automatic

− list of anchors must be retrieved (one more
operational constraint)

Already a beta program, several TLDs have already
registered

https://itar.iana.org/

https://itar.iana.org/

Trust Anchor Repositories...
DLV and ITAR

 See the summary and discussions here:

− “Using DNSSEC today” http://www.links.org/?p=542
− “DNSSEC with DLV” http://www.links.org/?p=562

 ... the general consensus to be that DLV and ITAR
complement each other

http://www.links.org/?p=542
http://www.links.org/?p=562

Operational Aspects

Signature expiration

 Signatures are per default 30 days (BIND)
 Need for regular resigning

− To maintain a constant window of validity for the
signatures of the existing RRset

− To sign new and updated RRsets

 Who does this ?

 The keys themselves do NOT expire...
− But they do need to be rolled over...

Key Rollovers

 Try to minimise impact
− Short validity of signatures
− Regular key rollover

 Remember: DNSKEYs do not have timestamps
− the RRSIG over the DNSKEY has the timestamp

 Key rollover involves second party or parties:
− State to be maintained during rollover
− Operationally expensive

Key Rollovers

 Two methods for doing key rollover

− pre-publish
− double signature

 KSK and ZSK rollover use different methods
(courtesy DNSSEC-Tools.org)

Key Rollovers

 ZSK Rollover Using the Pre-Publish Method

 1. wait for old zone data to expire from caches (TTL)

 2. sign the zone with the KSK and published ZSK

 3. wait for old zone data to expire from caches

 4. adjust keys in key list and sign the zone with new ZSK

Key Rollovers

 KSK Rollover Using the Double Signature Method

 1. wait for old zone data to expire from caches

 2. generate a new (published) KSK

 3. wait for the old DNSKEY RRset to expire from caches

 4. roll the KSKs

 5. transfer new DS keyset to the parent

 6. wait for parent to publish the new DS record

 7. reload the zone

Automated toolkits

 Luckily, a number of toolkits already exist to make
DNSSEC operations as smooth as possible

 Doesn't solve all problems yet, such as interaction
with parent and children (DS management, …), but
take care of all the rough edges of running a PKI
(yes, that's what it is...)

 http://www.dnssec.net/software:
− www.dnssec-tools.org
− www.opendnssec.se
− http://www.ripe.net/projects/disi/dnssec_maint_tool/
− http://www.hznet.de/dns/zkt/
− …

http://www.dnssec.net/software
http://www.dnssec-tools.org/
http://www.opendnssec.se/
http://www.ripe.net/projects/disi/dnssec_maint_tool/
http://www.hznet.de/dns/zkt/

Deployment hurdles
and other issues

Lack of operational experience...

Everyone talks about DNSSEC

 ... but few people have real hands-on experience
with day-to-day operations

 One can't just turn DNSSEC on and off

−stopping to sign a zone isn't enough
−parent needs to stop publishing DS record +
signatures

 Failure modes are fairly well known, but recovery
procedures cumbersome and need automated help

DS publication mechanisms

No established procedure exists for communicating
DS records to the parent

− SSL upload ?
− PGP/GPG signed mail ?
− EPP extension (RFC4310) ?

 Remember, this should happen automatically and reliably
 Redelegation or change of registrant when the zone is
signed
− Share the key during the transition ?
− Turn off DNSSEC for the time ?
− What if the original administrator is not cooperative ?

EDNS0 and broken firewalls,
DNS servers

DNSSEC implies EDNS0

− Larger DNS packets means > 512 bytes
− EDNS0 not always recognized/allowed by firewall
− TCP filtering, overzealous administrators..

 Many hotel network infrastructures (maybe this one as well)
do not allow DNSSEC records through

Application awareness

This could be a long term pain...

 Application's knowledge of DNSSEC ... is non-existent

− Users cannot see why things failed
− Push support questions back to network staff

Compare with SSL failures (for users who can read...)

 There are APIs – currently 2
- http://tools.ietf.org/id/draft-hayatnagarkar-dnsext-validator-api-07.txt

- http://www.unbound.net/documentation/index.html

Firefox plugin example (pullup from DNS layer to user)
What if applications explicitly set +CD ?

Corporate environments

 Split DNS anyone ?
− How do we deal with:

www.corp.net. A 130.221.140.4 ; public

and

www.corp.net. A 10.2.4.6 ; private

 “Oh but you shouldn't do that, that's Not The Right
Way!”
− ... like NAT ?
− ... and NSEC enumeration ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

