ENUM and Asterisk

VoIP Workshop
APRICOT 2008
Ed Lewis
ed.lewis@neustar.biz

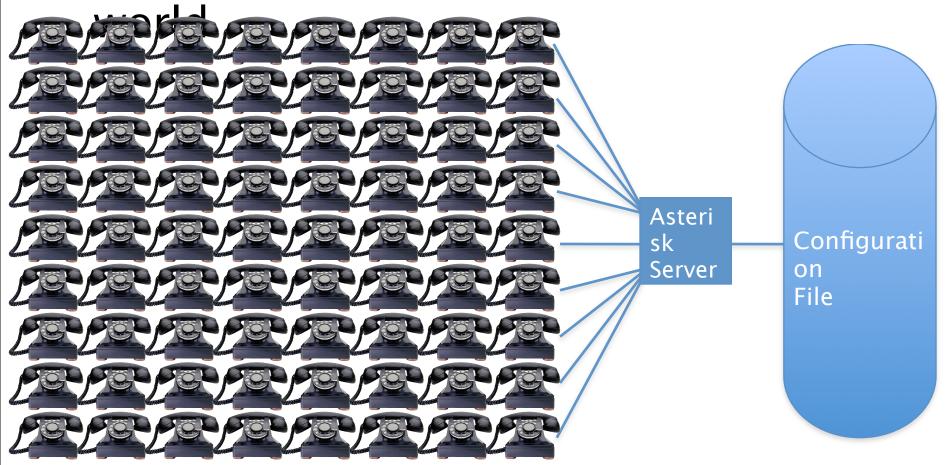
Agenda

- What/why is ENUM
- Role in "call set up"
- Provisioning
- History and future
- An exercise/lab

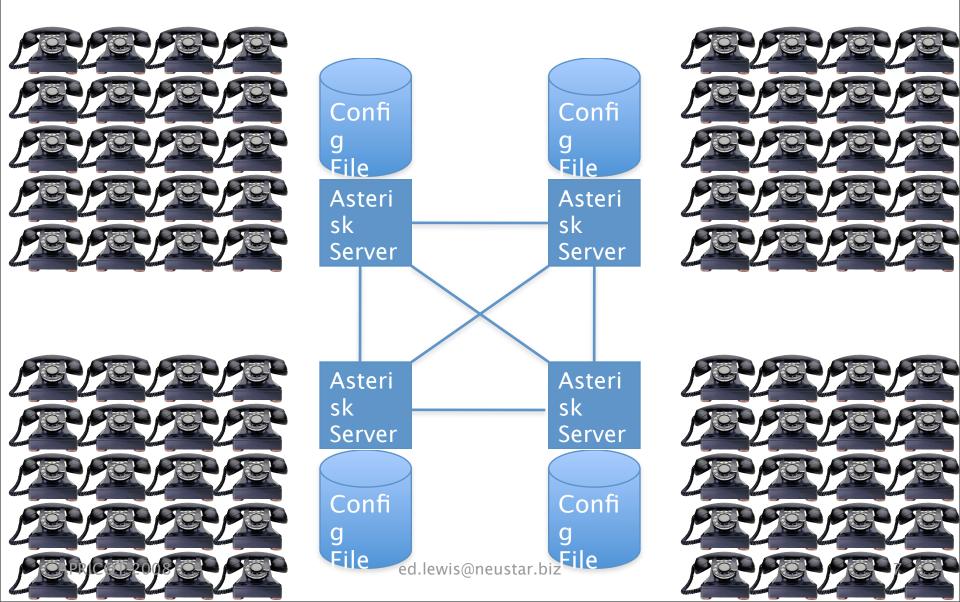
The What & Why

E-N-U-M vs. "ENUM"

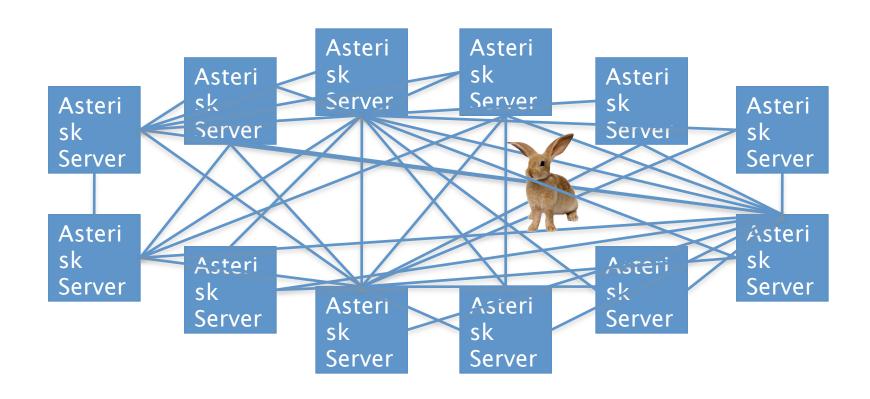
- Like all buzzwords, ENUM has two (or more) meanings
- The one in the original defining documents
 - -I call that E-N-U-M here
- The one vendors use
 - I call that "ENUM" here
- So I'll start trying to make the two clear


APRICOT Eventually, it's flust ENUM (no hyphens, no⁴

What is E-N-U-M?


- E(lectronic)NUM(bering)
- Converts tel-numbers into Domain Names
 - -+866227002323 becomes
 - -3.2.3.2.0.0.7.2.2.6.6.8.<\$e164>.<\$tld>
 - E.g., 3.2.3.2.0.0.7.2.2.6.6.8.e164.arpa
- Name is used to store NAPTR records which lead to SRV records which lead to addresses

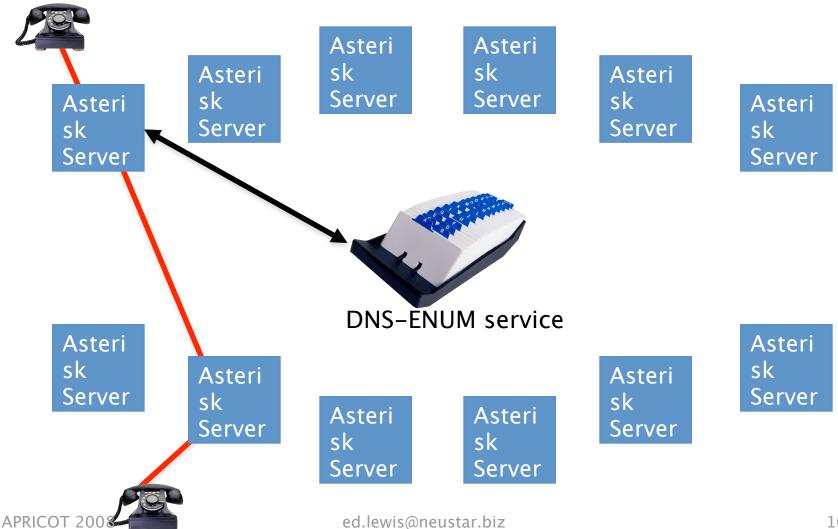
Why "ENUM"?


If there were one Asterisk Server in the

Four Servers?

More Servers?

Aaaaaaaaaggggghhhhhhhh!!


APRICOT 2008

Scalable way to find numbers

- Need to be able to know where to route a call
 - Traditional Telephony: Signaling System 7
 - Internet Candidate: Domain Name System
- Desirable features of DNS
 - Quick response
 - Very scalable
 - Can be operated for high availability, reliability

APRICOT (OTOH, also easy to "not" do it right!)

With "ENUM"

E-N-U-M vs. "ENUM"

- Both are known as ENUM, but...
- E-N-U-M is the mapping of E.164 to DNS
- "ENUM" refers that plus the entire process of discovering where to send a call
 - Convert telephone number to a URL
 - Discover the service location of the URL
 - Discover the network address of the

ENUM in standards

- IETF RFC documents
 - 3403 "DDDS Part Three: The DNS Database."
 - Part of the series 3401–3405
 - 3761 "The E.164 to URI DDDS App. (ENUM)"
 - 3824 "Using E.164 numbers with the SIP"
 - 4706 Year of the Rat/Mouse (current lunar year)
 - 5067 "Infrastructure ENUM Requirements"
- http://www.iana.org/assignments/enum-

Call Set-Up

Mechanics of ENUM

- User dials a number, assumption is made that this is for a voice call
- Server tries to set up a SIP session
 - First get a "sip:" URL for the dialed number
 - Next find where the host part or URL is serviced
 - Then find the network address
- Failing that, use the PSTN

Telephone Number to URL

- Accomplished via a DNS NAPTR Resource Record
 - NAPTR is "Naming Authority Pointer"
 - Beat's me
- ENUM(TN) owns it
 - ENUM(TN) means "E.164 converted into a domain name
- When used in ENUM, it holds a URL

ENUM(TN)

- Start with an E.164 number
 - -+866227002323 (福華大飯店的電話)
- Reverse it, dots between digits, drop "+"
 - -3.2.3.2.0.0.7.2.2.6.6.8
- Append the "ENUM root" to the name
 - strictly as an example, "e164.tld."
 - -3.2.3.2.0.0.7.2.2.6.6.8.e164.tld.
- Reversed because that's the DNS way

NAPTR RR

- NAPTR RR
 - ENUM(TN) "owns" it
 - Record contains 6 elements
 - order = uninteresting
 - preference = uninteresting
 - flags = always "u" for ENUM
 - service = "E2U+<something>" (see IANA page)
 - regular expression = interesting THE URL we want
 - replacement = uninteresting

An example

```
• +866227002323 to
  - "sip:866227002323@hotel.tw.tld."
$ORIGIN 3.2.3.2.0.0.7.2.2.6.6.8.e164.tld.
@ NAPTR 10 ( ; order
        10; preference
        "u" ; flags
        "E2U+sip" ; (enum)service
        "!(^.*)$!sip:\1@hotel.tw.tld.";
 rpl
```

.) ; replacement (unused)

Zonefile-ism

- Note that in the previous slide this
 - -"!(^.*)\$!sip:\1@hotel.tw.tld."
- is written
 - -"!(^.*)\$!sip:\\1@hotel.tw.tld."
- in the zone files to "escape" the backslash

So, NAPTR does what?

- After finding the DNS version of the E.
 164
- NAPTR gives us the "rewrite rule to determine the URL we want"
- Reg Exp
 - -+866227002323 and "(^.*\$)" makes "\1" = the TN
 - sip:\1@hotel.tw.tld. becomes
 - -sip:+866227002323@hotel.tw.tld.
- APRICTIPIES isn't an HTT. Popelish otel. tw.tld" isn't a

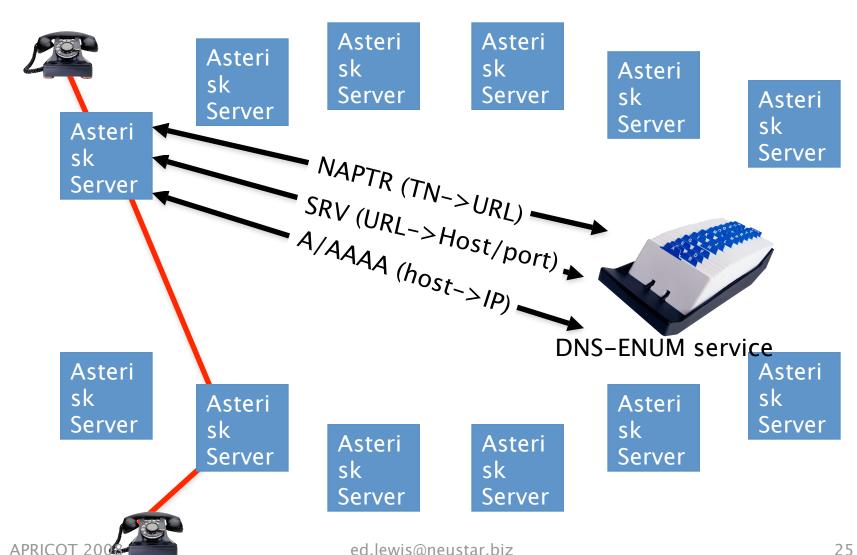
Now we have an URL, so what?

- We want to start a SIP session with hotel.tw.tld.
- Using another DNS convention, we ask for the service location
- The DNS name for this is
 - <service>. <transport>.hotel.tw.tld.
 - <service> for SIP is _sip.
 - <transport> for SIP is _udp.
- Ask for the SRV RR

SRV RR

- Service (location) resource record
- <owner> SRV
 - <priority> < weight> < host> < port>
 - priority= uninteresting
 - weight = uninteresting
 - host = DNS of host where process runs
 - port = port number

Example


 hotel.tw.tld has a SIP server on "sip.hotel.tw.tld." and port 5060

```
$ORIGIN hotel.tw.tld.
sip. udp SRV 10 10 sip.hotel.tw.tld. 5060
```

Now we know where to go, but...

- +866227002323 is dialed
- NAPTR says sip: +866227002323@hotel.tw.tld
- SIP says sip.hotel.tw.tld, port 5060
- Still need an IP address (IPv4 or IPv6)
- So we ask for the A or AAAA record of the hostname
- Now, we can send() the packet

So, With ENUM

That seems like a lot of work

- Details of DNS include
 - Caching of answers to speed things up
 - Redundant servers to scale
 - The SRV RR also works for sip URLs that aren't tied to E.164 numbers. (More flexible)
- Why do this?
 - It's supposed to be cheaper than the alternative (SS7 or configuring all peer servers)

ENUM's job

- Once the call set up is over, ENUM plays no role in the call
 - It only tells Asterisk where to direct SIP traffic
 - After that, the SIP session is independent of ENUM
- But we aren't done just yet

Provisioning

Call set up is just a part of the work

- How does the ENUM data get into DNS?
 - An activity called "provisioning."
 - Voice service providers have to register the NAPTRs, SRVs, and address records for the telephone numbers

Setting up a VoIP service offering

- Install an Asterisk server (or commercial alternative)
- Get phone numbers for customers
- Plan to accept incoming calls on the server
- The SRV and A/AAAA record(s) are then set
- For each of my phone numbers add an NAPTR record where others will look –

ENUM operation

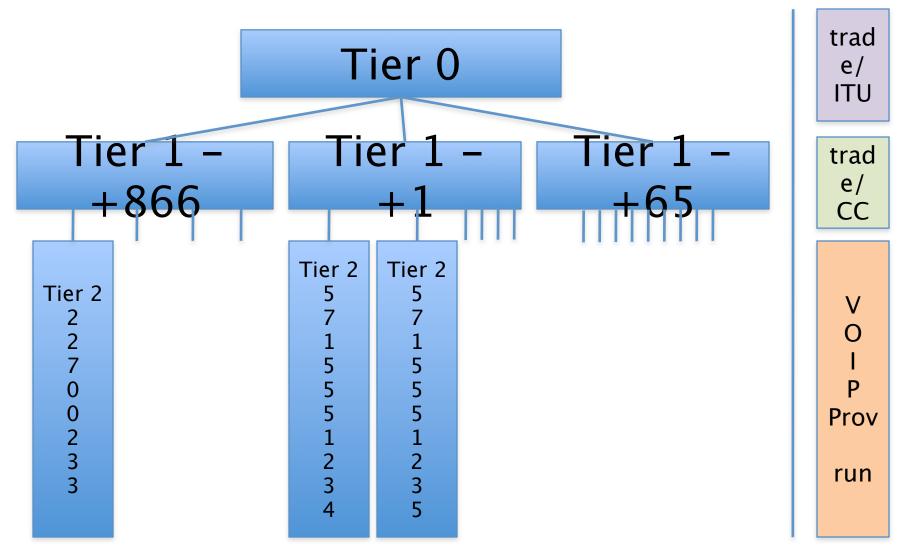
- Likely scenario is that ISPs will use a separate organization to operate the ENUM root
- Currently there are a number of "trade-associations" for this
 - Telephone operators seem to associate with others on the same media, VoIP, wireless, wireline, cable (TV), etc.
- A central ENUM registry is usually planned for the "top"

Tiers

- Infrastructure (trade association)
 ENUM is usually divided into three tiers
 - Tier 0, the top of the ENUM hierarchy
 - Tier 1, country codes
 - Tier 2, individual numbers

Tier 0

- Tier 0 is closely tied with the international standards of telephone number allocation
- As you can imagine, this gets political
- The ITU has instructed RIPE NCC (the European version of APNIC) to operate a registry with the ENUM root of e164.arpa.


Tier 1

- There are about 200-300 Tier 1's (possible)
- 1 per country code, with a few exceptions
 - +1 is shared by a few countries in North America
- Tier 1's vary greatly
 - Depends on the numbering plan
 - Pooling, blocks of numbers

Tier 2

- Usually just a block of consecutive numbers managed by a voice service provider
- With number portability, Tier 2 might be one number per zone
- Tier 2 ENUM DNS provider is up to the service provider

Tree of Tiers

Tier 0's

- The ITU has designated e164.arpa as the "public enum root"
 - Few, if anyone use it
- Many voice trade associations are planning their own tier 0's
 - Not all on the global public Internet
- What's the problem with multiple roots?
 - It's best if there's one, really, for SIP

Tier 0 registry

- The operator builds the Tier 0 DNS
- Really rather boring, only adjusted when country codes change or when Tier 1 registries change

Tier 1 Registry

- Produces country dialing code's DNS
- Only "excitement" comes when numbering allocations or transfers happen
- Tier 0 and Tier 1 usually only host delegations (NS records) and no NAPTR, SRV, nor address records

Tier 2 "registry"

- Contains the NAPTR records for fully (and over) dialed numbers
- Millions of these zones, they may not be traditional DNS zones
- This is where a lot of activity happens in provisioning

Other zones

- SRV and address records are usually in organization domains
 - Data is tied to the service provider
 - Not tied to the customer numbers

In the coming lab

- Tier 0, 1, and 2 are collapsed into one zone
 - -e164.tld. is the enum zone
 - We only have extensiions, not E.164 numbers
- SRV and addresses are in "groupXY" zones
- Provisioning is already done

History and Future

ENUM started as

- A way for people to attach services to their phone number
- A flop
 - People don't own their number, authority to make a change is not easy
 - User ENUM too complicated for common man
- Some public ENUM service offerings have already been suspended

ENUM is emerging as

- An upgrade to the existing interoperator call routing database
 - More flexible than voice-only traffic
- Infrastructure ENUM
 - Still fragmented among trade associations

A quick lab exercise

Lab, or Exercise

- Ingredients
 - DNS server on conference.apricot.net
 - 169.223.11.204
 - Your Asterisk servers with new configuration lines
 - SIP phones to dial each other

First, a look at the DNS

- For the lab, the DNS is pre-populated to work for us
 - I hope
- Let's see what this looks like from the DNS perspective

To see the ENUM zone up close

\$ dig @conference.apricot.net e164.tld.
axfr

- This will show you the whole zone
- The next slide will show the "relevant bits" but you may want to see it closer to you eyes

First the pre-provisioned

e164.tld. zone has this:

```
*.1.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group01.tld.!" .
*.2.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group02.tld.!" .
*.3.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group03.tld.!" .
*.4.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group04.tld.!" .
*.5.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group05.tld.!" .
*.6.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group06.tld.!" .
*.7.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group07.tld.!" .
*.8.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group08.tld.!" .
*.9.2 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group09.tld.!" .
*.0.3 NAPTR 10 10 "u" "E2U+sip" "!(^.*$)!sip:\\1@group10.tld.!" .
```

Group 16's zone

```
$TTL 900
$ORIGIN group16.tld.
(a
              IN SOA
                          ns1.tld. (
                          hostmaster.ns1.tld.
                          1 ; serial number
                          900 ; refresh
                          900 ; retry
                          604800 ; expire
                          900; negative cache
(a
                          ns1.tld.
                 NS
                          10 10 5060 sip.group16.tld.
sip. udp
                 SRV
sip.group16.tld. A
                          169.223.10.26
```

Exercise the DNS

Do these three dig's to see what Asterisk should see

```
dig @conference.apricot.net 0.0.6.3.e164.tld. naptr dig @conference.apricot.net _sip._udp.group16.tld. srv dig @conference.apricot.net sip.group16.tld. a
```

Configure Your Machine

- Has to be done at system level to tell Asterisk where to go to ask DNS questions
 - We are using a "improper" ENUM domain
- As root, edit /etc/resolv.conf
- Place this line in before the other "nameserver" lines

nameserver 169.223.11.204

This will send queries to our "ENUM

Tell Asterisk to "do" ENUM

Add to extensions.conf under [phones]

```
exten => _6XXXX,1,Dial(SIP/${ENUMLOOKUP($
    {EXTEN:1},sip,,1,e164.tld.)})
```

- Add 'exten' in [default] to ring phones (lab notes)
- Set 'allowguest=yes' in sip.conf

- Reload and Increase "verbosity"
- Dial "6-<4digits>"

Check to see

- Dialing 63601 should result in
 - URL sip:3601@group16.tld.
- In the live demo, I'll use 'asterisk -r' with verbose > 10.
 - Looking to see a line including 'Called 3600@group16.tld.'
 - in response to dialing 63600

Wrap UP

Questions?

- This is a quick introduction to ENUM
- Like many things, it's components are simple
 - More complex macros can be used to handle error conditions
- But the volume of work and business factors are huge

That's all folks

 Time for the 'live demo' and then the hands on portion