
Page - 1

Unix/Linux Preparation Course
June 27, 2010

Exercises: Permissions

REFERENCE

Reference: Shah, Steve, "Linux Administration: A Beginner's Guide", 2nd. ed., Osborne press, New
York, NY.

If you look at files in a directory using "ls -al" you will see the permissions for each file and
directories. Here is an example:
drwxrwxr-x 3 hervey hervey 4096 Feb 25 09:49 directory
-rwxr--r-- 12 hervey hervey 4096 Feb 16 05:02 file

The left column is important. You can view it like this:
Type User Group Other Links owner group size date hour name
d rwx rwx r-x 3 hervey hervey 4096 Feb 25 09:49 directory
- rwx r r 12 hervey hervey 4096 Feb 16 05:02 file

So, the directory has r (read), w (write), x (execute) access for the User and Group. For Other it has
r (read) and x (execute) access. The file has read/write/execute access for User and read only access
for everyone else (Group and Other).

To change permissions you use the "chmod" command. chmod uses a base eight (octal) system to
configure permissions. Or, you can use an alternate form to specify permissions by column
(User/Group/Other) at a time.

Permissions have values like this:
Letter Permission Value

R read 4
W write 2
X execute 1
- none 0

Thus you can give permissions to a file using the sum of the values for each permission you wish to
give for each column. Here is an example:
Letter Permission Value

--- none 0
r-- read only 4
rw- read and write 6
rwx read, write, and execute 7
r-x read and execute 5
--x execute 1

Page - 2

This is just one column. Thus, to give all the combinations you have a table like this:
Permissions Numeric Description
 equivalent

-rw------- 600 User has read & execute permission.
-rw-r--r-- 644 User has read & execute.
 Group and Other have read permission.
-rw-rw-rw- 666 Everyone (User, Group, Other) have read & write
 permission (dangerous?)
-rwx------ 700 User has read, write, & execute permission.
-rwxr-xr-x 755 User has read, write, & execute permission.
 Rest of the world (Other) has read & execute
 permission (typical for web pages or 644).
-rwxrwxrwx 777 Everyone has full access (read, write, execute).
-rwx--x--x 711 User has read, write, execute permission.
 Group and world have execute permission.
drwx------ 700 User only has access to this directory.
 Directories require execute permission to access.
drwxr-xr-x 755 User has full access to directory. Everyone else
 can see the directory.
drwx--x--x 711 Everyone can list files in the directory, but Group
 and Other need to know a filename to do this.

Note: “Other” is often referred to as “World”.

1.) CHANGING FILE PERMISSIONS

If you are logged in as the root user please do the following:

 # exit

To become a normal user, like pacnog. Your prompt should change to include a “$” sign.

 $

Once logged in we'll create a file and set permissions on it in various ways.

 $ cd [Go to your home directory]
 $ echo “test file” > working.txt
 $ chmod 444 working.txt

In spite of the fact that the file does not have write permission for the owner, the owner can still
change the file's permissions so that they can make it possible to write to it. Do you find this to be
strange? Each time you make a change to the working.txt file type:

 $ ls –lah working.txt

to see the updated permissions on the file. Now let’s make the file writeable by the file’s owner:

$ chmod 744 working.txt

Or, you can do this by using this form of chmod:

Page - 3

$ chmod u+w working.txt

To remove the read permission for the User on a file you would do
$ chmod u-r working.txt

Or, you can do something like:

$ chmod 344 working.txt

You probably noticed that you can use the "-" (minus) sign to remove permissions from a file. Try
reading your file:

 $ cat working.txt

What happened? Uh oh! You can't read your file. Please make the file readable by you:

 $ chmod ??? working.txt

Ask your instructor for help if you don't know what to put in for “???”. Or, look at your reference at
the start of these exercises to figure this out.

2. PROGRAM EXECUTION, PRIVILEGES & SUDO

As a general user you can see that there is a file called “/etc/shadow”:

 $ ls /etc/shadow

But, you cannot see its contents:

 $ less /etc/shadow

As a general user, however, you can see the /etc/shadow file if you do the following:

 $ sudo less /etc/shadow

What is sudo? Read about it. Note that your userid needs to be allowed to use sudo by the system
administrator of your server.

 $ man sudo

(by updating the file /etc/sudoers)

Page - 4

3. CREATE A NEW GROUP

 $ sudo groupadd team1

Prove that it really exists:

 $ sudo grep team1 /etc/group

Now let's place our pacnog user in this new group:

 $ groups

You can see that pacnog is a member of the admin group as well as its own group, pacnog.

 $ sudo usermod –G team1,admin pacnog

You won't be able to use your new group until you have logged in and out from your account, or
have simulated this process by doing this:

 $ su - pacnog

Now try typing:

 $ groups

Using groups like this can be useful for working in teams on a project, giving access to web
directories, etc. Note that above, when we typed “usermod” that you needed to specify all the
groups the user belongs to as well as the new group for the user (“-G team1,admin”). If you don’t
do this, then the user will be removed from any of the groups you don’t specific (other than the
user’s default group, i.e. pacnog).

4. GIVE GROUP ACCESS TO A FILE

Do the following:

 $ cd [To be sure we are in your home dir]
 $ echo “This is our group test file” > group.txt
 $ chgrp team1 group.txt

What permissions does the file have now?

 $ ls -l group.txt

You should see something like:

Page - 5

 -rw-r--r-- 1 pacnog team1 28 2010-06-222 10:14 group.txt

How would you give members of the group team1 read/write access to this file? Before you look
below try solving this on your own.

We'll use the numeric chmod functionality.

 $ chmod 664 group.txt

Alternatively you could have typed:

 $ chmod g+w group.txt

Look at the file's permissions:

 $ ls -l group.txt

You should see something like:

 -rw-rw-r-- 1 pacnog team1 28 2010-06-222 10:14 group.txt

5. MAKE A FILE EXECUTABLE

Do this exercise as the pacnog user.

 $ cd [To be sure we are in your home dir]
 $ touch hello
 $ vi hello

Now add a single line to the file that reads:

 echo 'Hello, world!'

Do this by pressing the “i” key to go in to insert mode in vi. Type in the text, then press the ESCape
key, and then press “:wq” to write and quit from the file.

At this point let's try to run this file:

 $./hello

You'll probably see something like:

 bash: ./hello: Permission denied

This implies that the file is not executable. We need to set the file's permission to be executable by
our pacnog user. How would you do this?

 $ chmod 755 hello

Page - 6

would work. Now try running the file:

 $./hello

You should see

 Hello, world!

on your screen. You've just written your first script!

Now set your hello file to be readable, but not executable by the pacnog user and executable by
the Group and by Other. Can you figure out how to do this on your own? If you type:

 $ ls –l hello

You should see something like this:

 -r—r-xr-x 1 pacnog pacnog 22 2010-06-222 08:40 hello

What happens if you now type?

 $./hello

Why does this happen? If you execute the file as a different user it will still work! Does this seem
odd? (Hint: think “left to right”)

CONCLUSION

What's the “./” about?

In our example above when you typed “hello” the file “hello” is in your home directory. Your home
directory is not in your default path as configured for the bash shell. Thus, bash will not find the
hello file, even though it's in the same directory where you are typing the command. By using “./”
before the filename we tell bash to explicitly look in the same directory for the file to execute.

What about setuid, setgid and sticky bits?

For more information have a look at:
http://en.wikipedia.org/wiki/Setuid

