
Track 2 Workshop
PacNOG 7

American Samoa

Firewalling and NAT

Core Concepts

•  Host security vs Network security
•  What is a firewall?
•  What does it do?
•  Where does one use it?
•  At what level does it function?
•  What kinds of firewalls are there?
•  What about NAT?

Host vs Network Security
•  Host security

– Rules, policies and practices that are applied
to the host itself

•  Passwords, ACLs, roles and groups, system
integrity (checksum), ressource audit, encryption

–  If not automated, doesn't scale
– No global way of enforcing which services can

be reached from the network
•  Threats: buffer overflow, brute force, social

engineering

Host vs Network Security
•  Network security

– Rules, policies and practices that target
network traffic and services

•  Rules/Filters, traffic analysis, penetration testing,
anti-spoofing, encryption

– Doesn't concern with local security on the host
– Global way of protecting access to the

resources of a network
•  Threats: DoS, portscan, buffer overflow,

spoofing, sniffing

What is a Firewall?

•  Device (software, hardware) enforcing
selective access (allow, deny) between
different security domains, based on rules
–  In plain speak: traffic police

What Does a Firewall Do?
•  Selectively grant or reject access to

network traffic between hosts or networks
belonging to different security domains

•  Domains can be local or remote (LAN,
Internet)

•  The rules can apply to the traffic at
different levels
– The rules may be explicit or implicit (difference

between stateful and stateless)

What Does a Firewall Do?

•  The goal is to protect your network from
undesired traffic

•  It doesn't matter if an attack originates
from the inside or outside...
– You have a responsibility to protect the rest of

the Internet from your systems
– Maybe your users are well behaved

•  But you may have been hacked, or infected by a
virus or spyware sending spam

Where Does One Use a Firewall?

•  The firewall must be located between
security domains

•  Example above: between Internet and LAN

Where Does One Use a Firewall?

•  The firewall acts as a ”choke point” for all
traffic (just like a router in a simple network
setup)
– Enforces traffic rules in one location

•  Advantage: single point of control, no need
to configure rules on every machine

•  Downside: single point of failure!

What About NAT?

•  NAT is a kind of transformation performed
on packets to-and-from a network

•  NAT requires state keeping
•  Typically, one uses PAT (Port Address

Translation)
– # of private IPs > # of public IPs
–  ”overload” the public IPs by using multiple

source ports to keep track of the private IPs

What About NAT?

•  NAT is not synonymous with anonymity
and security!
– They are a side effect
– NAT alone does not protect from attacks if the

attacker is on your external network, and
sending packets to your inside hosts via the
firewall

–  If the firewall doesn't explicitly reject this
traffic, it might get through!

Summary

•  Firewalls are located between different
parts of a network
– Can be ”inside” / ”outside”, but it can also be

”sales” / ”engineering” / ”production”
•  Firewalls can operate at different levels

– They can be more or less aware of what's
going on inside the packets

– Stateful firewalls are to be preferred over
simple packet filters

Questions

?

A Firewall for Linux: iptables

Current (2010) Linux distributions come with
the ip_tables packet filter either built-in to
the kernel (versions 2.4 and 2.6) or
available as a module.

The command line interface is:
 iptables (IPv4)
 iptables6 (IPv6)

What Can iptables Do?
•  With iptables you can:

– Create firewall rules
– Configure Network Address Translation
–  “Mangle” packets on the fly
– Can be configured “by hand,” via scripts,

using third party tools
– Block packets until a user is authenticated
– Etc…

For now we will concentrate on firewalls

iptables Rulesets: What to Filter

As you create iptables rules remember you
must decided what protocols you are
filtering:
–  tcp
– udp
–  icmp
– and, specific port numbers

iptables has many protocol specific options

iptables Complexity

•  The first thing you should do to understand
iptables after this class is:

 man iptables!
 Really! Do this.

•  There are many, many, many options
available.

•  There are many, many, many custom
modules available.

The Three iptables Tables
“filter” table
The iptables filter table is the default table for rules,

unless otherwise specified.
“nat” table
The network address translation or nat table is

used to translate the source or destination field
in packets.

“mangle” table
The mangle table is used to alter certain fields in

the headers of IP packets.

iptables filter Table Chains

The filter table has three built-in chains that
packets traverse:

1.  INPUT: Packets destined for the host.
2.  OUTPUT: Packets created by the host to

send to another system
3.  FORWARD: Packets received by the host

that are destined for another host
You can create your own chains as well.

We’ll do this later.

Packet Traversal of iptables
•  On the next slide you can see where the

filter table and the INPUT, FORWARD and
OUTPUT chains reside within iptables.

•  If you don’t specify any nat or mangle
table rules, then packets traverse these
tables with no affect.

•  For initial firewalls we concentrate on
applying packet filtering rules to packets
traversing the filter table, INPUT chain.

iptables Packet Traversal
•  For this introduction to iptables we spend
 most of our time applying rules in the
 yellow box – or, for packets going in to
 our host destined for local processes.

•  For packets leaving from our host we
 would filter these in the filter table,
 OUTPUT chain.

•  For packets passing through our host to
 another network (such as using NAT) we
 filter these in the filter table, FORWARD
 chain.

Diagram courtest of:
http://www.linuxhomenetworking.com/wiki/index.php/
Quick_HOWTO_:_Ch14_:_Linux_Firewalls_Using_iptables

iptables Packet Traversal cont.

As you can see we are just getting started
with iptables.

It’s important to understand what the other
tables and chains are for.

In the next few slides we will describe the
complete steps a packet takes as it is
examined by the Linux kernel depending
on its final destination.

Tables courtesy of http://www.faqs.org/docs/iptables/traversingoftables.html

Packets Destined for Local Host
 Step Table Chain Comment
1 On the wire (e.g., Internet)
2 Comes in on the interface (e.g., eth0)
3 mangle PREROUTING This chain is normally used for mangling packets, i.e.,
 changing TOS and so on.

4 nat PREROUTING This chain is used for DNAT mainly. Avoid filtering in
 this chain since it will be bypassed in certain cases.
5 Routing decision, i.e., is the packet destined for our
 local host or to be forwarded and where.

6 mangle INPUT At this point, the mangle INPUT chain is hit. We use
 this chain to mangle packets, after they have been
 routed, but before they are actually sent to the
 process on the machine.

7 filter INPUT This is where we do filtering for all incoming traffic
 destined for our local host.

8 Local process/application (i.e., server/client program)

Packets Coming from Local Host
 Step Table Chain Comment
1 Local process/application (i.e., server/client program)
2 Routing decision. What source address to use, what
 outgoing interface to use, and other necessary
 information that needs to be gathered.
3 mangle OUTPUT This is where we mangle packets, it is suggested that
 you don’t filter in this chain as it can have side effects.
4 nat OUTPUT This chain can be used to NAT outgoing packets from
 the firewall itself.
5 filter OUTPUT This is where we filter packets going out from the
 local host.
6 mangle POSTROUTING The POSTROUTING chain in the mangle table is
 mainly used when we want to do mangling on packets

 before they leave our host, but after the actual routing
 decisions. This chain will be hit by both packets just
 traversing the firewall, as well as packets created by the
 firewall itself.
7 nat POSTROUTING This is where we do SNAT. You should not filter here.
8 Goes out on some interface (e.g., eth0)
9 On the wire (e.g., Internet)

Forwarded Packets
 Step Table Chain Comment
 1 On the wire (i.e., Internet)
2 Comes in on the interface (i.e., eth0)
3 mangle PREROUTING This chain is normally used for mangling packets, i.e.,
 changing TOS and so on.
4 nat PREROUTING This chain is used for DNAT mainly. SNAT is done
 further on. Avoid filtering in this chain since it will be

 bypassed in certain cases.
5 Routing decision, i.e., is the packet destined for our
 local host or to be forwarded and where.
6 mangle FORWARD The packet is then sent on to the FORWARD chain of
 the mangle table. This can be used for very specific
 needs, where we want to mangle the packets after the
 initial routing decision, but before the last routing
 decision made just before the packet is sent out.

7 Continued on the following slide

Forwarded Packets cont.

Step Table Chain Comment
7 filter FORWARD The packet gets routed onto the FORWARD chain.
 Only forwarded packets go through here, and here we
 do all the filtering. Note that all traffic that's forwarded
 goes through here (not only in one direction), so you
 need to think about it when writing your rule-set.
 8 mangle POSTROUTING This chain is used for specific types of packet mangling
 that we wish to take place after all kinds of routing
 decisions has been done, but still on this machine.
9 nat POSTROUTING This chain should first and foremost be used for SNAT.
 Avoid doing filtering here, since certain packets might
 pass this chain without ever hitting it. This is also where
 Masquerading is done.
10 Goes out on the outgoing interface (i.e., eth1).
11 Out on the wire again (i.e., LAN).

iptables Summary

•  As you build rules for iptables be mindful
of how incoming, outgoing and forwarded
packets traverse the various tables and
chains.

•  iptables is a very powerful tool. Starting
simple and building as you learn and
understand more about iptables is a good
strategy.

Questions

?

Building a Firewall Ruleset
Two basic approaches:
1.  Allow everything by default, filter the

”bad” things
– Very quickly unmanageable!
– What is ”bad” ?

2.  Block everything by default, allow only
what you know should be allowing
– More work in the beginning
– Easier in the long run

Building a Firewall Ruleset
Some firewalls have a ”first match” principle,

others ”last match”:
 1. allow ip from A to B
2. deny ip from any to any

•  In the above example, ip traffic from A to B
will be allowed if the firewall software
stops on the first match (rule 1).

•  If the firewall is last match, the traffic will
be denied (last rule to match is 2)

Building a Firewall Ruleset

Be careful with order and logical operators

FW

O

P S

allow tcp from not S to I

allow tcp from P to I

I

You have just opened for traffic from O to I!

Building a Firewall Ruleset
•  Be careful not too be too conservative

when filtering certain protocols
– Many ICMP messages should be allowed as

they can carry important information about
network status (congestion, reachability)

– Most stateful firewalls automatically allow
ICMP messages that are related to a known
active ”connection”

•  DNS is much more than ”512 byte UDP
packets on port 53”

Remember...
•  A firewall with very strict rules doesn't help

if users are allowed to ssh from computer
to computer
– Once an evildoer is inside the network, it can

be too late...
•  ”A hard crunchy shell around a soft chewy

centre” – Bill Cheswick / Steve Bellovin
•  It's not enough to only focus on network

security!

Questions

?

Building an iptables Ruleset
There are so many ways to build rulesets

with iptables, many available tools and
even more opinions about what’s best!

But, in general…
1.  Create an initial iptables ruleset using the iptables

command line interface (CLI).
2.  Save your ruleset out to a file.
3.  Configure your box to use the ruleset at system start.
4.  Edit the saved ruleset file to create more complex rulesets,

make updates, etc.
5.  Test your ruleset! Critical. Be sure it works as expected.

Complexity and Power

A nice feature of iptables is the ability to filter
on complex and dynamic protocols and
actions, such as ftp, irc, number of failed
attempts, connection attempts by ip or
ranges and much more.

A Simple Example

Block ping (icmp echo request) locally:

iptables -A INPUT -p icmp --icmp-type echo-request -i lo -j DROP!

What’s going on?
1.  -A Append this rule to the INPUT chain
2.  -p protocol
3.  --icmp-type echo-request
4.  -i input interface
5.  -j DROP jump to the target DROP

A Simple Example cont.

Remove our ping blocking rule:
iptables -D INPUT -p icmp --icmp-type echo-request -i lo -j DROP!

What’s going on?
•  -D: “Delete” the following specification

How to test this:
 ping 127.0.0.1!

By the way – should you block ping? (NO!!!)

A More Complex Example

Block SSH login attempts after three failures
in five minutes:

!iptables -N SSHSCAN  
iptables -A INPUT -p tcp --dport 22 -m state --state NEW -j SSHSCAN  
iptables -A SSHSCAN -m recent --set --name SSH  
iptables -A SSHSCAN -m recent --update --seconds 300 --hitcount 3 --name \
!SSH -j DROP!

What’s going on here?
This works because iptables is a stateful

firewall. It remembers packets coming from
the same origin address.

A More Complex Example cont.

1. iptables -N SSHSCAN!
 Create a New chain named “SSHSCAN”

2. iptables -A INPUT -p tcp --dport 22
-m state --state NEW -j SSHSCAN!

!For the tcp protocol packets connecting on port
22 (SSH) load the “state” module and look for
new connections – if this matches, then jump to
the next SSHSCAN target.!

A More Complex Example cont.

3. iptables -A SSHSCAN -m recent --set
--name SSH!

 For the SSHSCAN chain load the recent
module which will set and check work
based on user-definable fields and
timers, then add the source address of
the associated packets (--set), and finally
specify a list name to use for commands
(--name SSH).

A More Complex Example cont.

4. iptables -A SSHSCAN -m recent  
--update --seconds 300 --hitcount 3  
--name SSH -j DROP  

Scan the SSH list of IP addresses and
see if there have been three separate
connection attempts within the last 300
seconds (5 minutes). If there is a match,
drop the packet and update the
timestamp on the packet.

Complex Rulesets

•  The last example can be refined to:
– Allow certain addresses to be excluded:

iptables -A INPUT -p tcp --dport 22 -s $WHITE_LIST_IP -j ACCEPT  

– To log connection attempts:
iptables -A SSHSCAN -m recent --update --seconds 300 --hitcount 3  
--name SSH -j LOG --log-level info --log-prefix "SSH SCAN blocked: ”  

–  More Details available at:
http://www.ducea.com/2006/06/28/using-iptables-to-
block-brute-force-attacks/

Basic iptables Commands

A more complete list of commands will be
provided during your lab.

Step-by-step instructions for using iptables
with Ubuntu will be part of your lab.

•  iptables -F  
Flush all iptables rules

•  iptables -L  
List all iptables rules

Basic iptables Commands cont.
•  iptables –L INPUT  

View all INPUT chain rules

•  iptables -I INPUT -s "201.128.33.200" -j DROP  
Block an IP address

•  iptables -I INPUT -s "201.128.33.0/24" -j DROP  
Block a range of IP addresses

•  iptables -I INPUT -s "201.128.33.200” –j ACCEPT  
Unblock an IP address

•  iptables -A INPUT -p tcp --dport 25 -j DROP !
•  iptables -A INPUT -p udp --dport 25 -j DROP  

Block access to a port (SMTP) for both tcp and udp

iptables Connection Tracking

•  The iptables connection tracking feature is the
ability to maintain connection information in
memory.

•  It can remember connection states such as
established and new connections along with
protocol types, source and destination ip
address.

•  You can allow or deny access based upon state.

iptables Connection Tracking cont.

Connection tracking uses four states:
•  NEW - A Client requesting new connection via

firewall host
•  ESTABLISHED - A connection that is part of already

established connection
•  RELATED - A connection that is requesting a new

request but is part of an existing connection.
•  INVALID - If none of the above three states can be

referred or used then it is an INVALID state.
We may use this feature of iptables in our firewall lab.

Questions

?

Some Food for Thought

•  Complex firewall rule sets need to be
broken down and modular. Don't just add!

•  Tables, groups, macros and variables
•  Check with your ISP to know what they

filter - for example, it does not help to filter
nefarious traffic on your side (downstream)
of the connection, if it is a denial of Service
- it is too late!

A Firewall for Linux: iptables

The iptables project is located here:
 http://www.netfilter.org/projects/iptables/

Extensive documentation is available:
 http://www.netfilter.org/documentation/

An Ubuntu iptables HowTo
 https://help.ubuntu.com/community/IptablesHowTo

A CentOS (RedHat) iptables HowTo
 http://wiki.centos.org/HowTos/Network/IPTables

